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Objective:
Develop a compact, low-volume prescreening 
tool for the prediction of physical and chemical 
properties of sustainable aviation fuels (SAFs) using 
Fourier-Transform Infrared (FTIR) spectrometry and 
advanced statistical analysis methods.

Project Benefits:
• FTIR prescreening approach will make SAF design 

and approval process less costly and more 
efficient.

• This low-volume (<1 mL) method yields insights that 
are complementary to other prescreening 
approaches (e.g., GCxGC). 

Research Approach:

Develop statistical models that correlate the 
physical and chemical properties of a fuel (e.g., 
boiling point, heat of combustion, flash point, etc.) 
with its vapor-phase FTIR spectrum.

Apply these models to predict the physical and 
chemical properties of next-generation SAFs
and fuel components.

Major Accomplishments (to date):
• Employed blending rules to extend the training 

dataset by adding the FTIR spectra and property data of 
neat hydrocarbon mixtures 

• Trained models for key physical and chemical 
properties using the expanded dataset

• The models successfully predict the properties of all 
fuels in the training dataset

Future Work / Schedule:
• Develop nonlinear regression strategies to improve 

predictions of properties with nonlinear dependence on 
composition

• Optimize models and begin utilization to predict the 
properties of SAFs and SAF components

• Compare IR approach with alternate prescreening methods
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Introduction
Motivation:

• The vapor-phase IR absorption spectrum of a hydrocarbon fuel contains
quantitative information about the fuel’s molecular structure and functional groups

• Statistical models can be used to infer the physical and chemical properties of
fuels from this spectral information

FTIR Spectrum 

[2-15 µm]

Regularized Linear Models
Properties

Approach:

• Develop a training dataset based on broad (2-15 µm) vapor-phase spectra of fuels
and their key physical and chemical properties

• Build statistical models using the training data to directly correlate fuel properties,
functional groups, and composition with FTIR spectral features

• Use the optimized models to predict the physical and chemical properties of next-
generation SAFs and SAF components

Fuel structure is evident in the IR
spectra; shape and height of absorption
features reflects the type and number of
functional groups, and can be correlated
with physical/chemical properties
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Previously

• Introduced the benefits of utilizing the extended 2-15 µm spectral 
range vs. 3.4-µm region only

• Demonstrated improved model performance for expanded training 
dataset, which incorporated extended 2-15 µm spectra for real fuels 
(measured in-house)

• Research question: Can the training dataset be further expanded by 
adding simulated spectra?
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3.4 μm 28.82 18.93% 0.59

2-16 μm 8.55 5.61% 0.99

Training cross-validation error
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Further extension of the training 
dataset using blending rules
• Gas-phase FTIR spectra have a linear dependence on fuel composition, 

offering the ability to calculate a “blended fuel” spectrum as a weighted sum 
of the spectra of multiple neat components

• The “blending” of the IR spectra of neat hydrocarbons enables the extension 
of the training dataset without the need for additional FTIR 
measurements

• Calculated spectra of 24 blends of neat hydrocarbons (2-3 components) 
have now been added to the training dataset
– Blends composed of n-dodecane, n-decane, isooctane, and toluene

Spectrum of the blended fuel BF2: 59.2% n-Decane + 40.8% Toluene
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Blending rules for property data

• Blending rules were used to calculate net heat of combustion (NHC), 
threshold sooting index (TSI), and kinematic viscosity (KV) property 
values for the 24 neat hydrocarbon mixtures

• The number of data points available for each property in the training 
dataset, after applying the blending correlations, is shown below:

Property
Number of fuels Type of 

blending rulePrevious dataset Expanded dataset

NHC 35 59 Linear

TSI 20 44 Linear

KV 31 55 Non-linear

• The larger sample size of the expanded dataset is expected to 
improve the prediction accuracy of the regularized linear models for 
all three properties
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Model Performance for NHC and TSI

• Regularized linear models were trained on the expanded dataset for net heat of 
combustion (NHC) and threshold sooting index (TSI)

• The models show high prediction
accuracy for both properties, as
evidenced by the low mean
absolute error (MAE) of
prediction on the training data

• The high R2 values indicate that
both the models fit the training data
well, and the low cross-validation
error (CVE) highlights the potential
of this approach for making highly
accurate future property predictions

• Since the blending rules used for
these properties are linear, the
regularized linear models
accurately estimate the
properties of the hydrocarbon
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Model Performance for KV

• A regularized linear model was also developed for the property  kinematic 
viscosity (KV) - a property with  non-linear dependence on composition

• Although the model fits the training data reasonably well, the predictive
accuracy is not as high as in the case of NHC and TSI

• This is indicated by the higher CVE and MAE, and the lower R2 value
compared to the other properties

• The blending rule employed for KV clearly shows that viscosity exhibits a
strongly non-linear dependence on fuel composition, thus suggesting
the need for a revised modeling approach for some properties

KV Model (N = 26, ⍺ = 0.3)
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Summary and Future Work

• IR spectral analysis offers a robust, low-volume way to predict the
physical and chemical properties of fuels

• Blending rules were used to calculate the FTIR spectra and properties
of neat hydrocarbon mixtures to expand the training dataset

• Regularized linear models trained on the expanded training dataset show
excellent predictive performance for NHC and TSI, with scope for further
improvement in the case of KV

Next steps:

• Develop nonlinear regression strategies to improve the prediction accuracy
for highly nonlinear properties like kinematic viscosity

• Continue optimization of models, use them to predict the properties of SAFs
and SAF components, and compare model performance with alternate methods

• Increase ASCENT collaboration (P65): investigate the impact of isomeric
structure on key properties such as ignition delay time (IDT) and freezing
point


