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Objective:

To develop early-stage low volume evaluations of
novel Sustainable Aviation Fuel (SAF) candidates
via ASTM property tests and internal predictions

Project Benefits:

Rapid feedback to novel fuel producers on the blend
ratios, compatibility, and combustor operability
impacts of SAF candidates

Research Approach:

Evaluation methodologies are developed around a
two-tiered prescreening process

Tier a focuses on predictions; Tier g focuses on
measurements (/increase since F21 ASCENT)
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Major Accomplishments (to date):

Tools developed in P65a have been used to evaluate total 90 SAF
candidate samples

Distillation cuts for particular feedstock-pathway are in standard
practices; variance across candidate compositions is substantial
and requires some tailoring.

Publications total: 8 / 2 are in review (1 on Virent's SAK) / 2 are nearing
submission

Invited talks total/since Fall ‘21: 16 / 3

Future Work / Schedule:

Development of additional Tier « methods
April '22: Submission of two papers in regards on VUV
identification and usage

July '22: Development of more automated algorithms for complex
mixtures.

This research was funded by the U.S. Federal Aviation Administration Office of Environment and Energy through ASCENT, the FAA Center of Excellence for Alternative Jet Fuels and the Environment, project 065a through FAA Award Number 13-C- 1
AJFE-UD-026 under the supervision of Dr. Anna Oldani. Any opinions, findings, conclusions or recommendations expressed in this this material are those of the authors and do not necessarily reflect the views of the FAA.
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Exemplar prescreening evaluation
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Isomeric structure has a significant TA?

Impact on properties

Significant variance within a
hydrocarbon group and

carbon number
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Approach
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Analytes are assigned to
a hydrocarbon class and
carbon number (i.),
quantified (ii.), and

identified (iii.)

SAS
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Two-dimensional separation with
parallel FID and VUV sensing
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Example characterization of A=
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VUV Analyte Identification -

Spectra matching or hypothesis testing ASCENT
We have observed: Goodness-of-fit methods (such as R?):

a) non-matches with R2>0.997 (high S/N) | a) mask variance with similar spectra

b) matches with R2<0.97 (low S/N) b) ignore noise for comparisons, so noisy spectra

are ‘penalized’

Impact:

Results are faster! *Less ‘human’ ($) in the loop
Excellent true-negative detection

Deconvoluting peaks is very rigorous.

p) D\ The method can be applied to many other problems.
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Conclusions and next steps <\~

- Significant progress on signal processing or matching
spectra

« Several properties are predicted very well:
— LHV, density, surface tension, and flash point

- 17 new candidate fuels have been tested and
properties predicted

— Processes have been altered and improved as a result of tests

- Next steps:
— Finalizing experimental method for generic evaluation of
complex mixtures
— Further software and numerical method development
— Pareto fronts for %blend versus %original carbon
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Property predictions with VUV 7A7
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From the molecular perspective, =7 A\
SAFs are not conventional fuels ASCENT
compositions can be very selective AND diverse
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Approach -
Numerical ASCENT

- Three types of uncertainty are considered:
— Mass quantification (oy,); normal distribution

— Property in reference library (azj); normal distribution
— Isomeric identification (o;s,mer); Uniform distribution

Oisomer = f(Z; £ oz, V
o _ ] i € [Class; n}])
- Distributions are sampled until convergence
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Identification Methods TAT

Manual Method

Select background region

GCGC FID Response
® VUV Response
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Steps Taken In Video:

1.) Select a local background region
near our peak of interest

2.) Select the peak region

3.) Process the peak by normalizing
and removing background noise

3.) Run matching to resolve highest
R2 match for the peak of interest

ASCENT

AVIATION SUSTAINABILITY CENTER

Automated Method
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Future work:
 Most of the identified carbon will be identified with an

automated method.
« Remaining carbon for smaller peaks will likely need to be

manually selected. 12



