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Objective:
Support development of low-emissions combustion 
technologies for 𝑝𝑝3, 𝑇𝑇3, FAR in CST engines
1) Characterize and understand the emissions and 

operability of lean premixed combustor for CST
2) Develop methods for computational 

design/analysis
3) Provide input to engine and environmental 

impact modeling

Project Benefits:
1) Advance novel LPP combustion technology for 

environmentally compatible CST
2) Reduce development time/cost through 

validated tools

Research Approach:
1) Experimental studies at realistic operating 

conditions using laser measurement techniques
– High-speed spray imaging, 

chemiluminescence
– Fuel PLIF (mixing), TiRe-LII (nvPM)
– Exhaust emissions, noise

2) Large Eddy Simulations
– Research-scale first-principles LES
– Industrial-scale LES
– Accuracy/cost trade-offs

3) Combustion dynamics modeling

Major Accomplishments (to date):
1) Design, fabrication, installation, operation of 

novel LPP combustor for CST conditions
2) Design, setup, operation of laser diagnostics and 

emissions measurements
3) Industrial standard practice LES of LPP 

combustor
4) Methodology for time/space-dependent BCs on 

high-fidelity LES
Future Work:
1) Data analysis from Campaign 1
2) Completion of high-fidelity LES
3) Campaign 2, LES 2, thermoacoustics modeling 
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Experimental Campaign #1

Quanta Ray Pro
Quantronix Hawk
2x Phantom v2640
Shimazu HPV-X2
Andor iStar

High-speed OH* CL
Mie scattering
Fuel PLIF
TiRe-LII
Emissions
• NOx, CO, UHC
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Test Rig Details

New 
components
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Typical Flame Video
𝑝𝑝3 ≈ 1.3 × nominal cruise, 𝑇𝑇3 ≈ 720 K, 𝐹𝐹𝐹𝐹𝑅𝑅mix ≈ 0.045

Flame video

Droplet Mie scattering

𝑝𝑝3 ≈ 1 × NC, 𝑇𝑇3 ≈ 700 K, 
𝐹𝐹𝐹𝐹𝑅𝑅mix ≈ 0.055
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Normalized Emissions Data

𝑝𝑝3 = NC 𝑝𝑝3 = NC

𝑝𝑝3 = 1.3NC 𝑝𝑝3 = 1.3NC

Approaching LBO
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Typical Fuel PLIF

Darkfield correction
Background correction
Whitefield correction
Sheet correction
Absorption correction (TBD)

Partially premixed fuel/air

Burnt products in 
recirculation zone

Instantaneous flame length
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Typical Mean Fuel PLIF

Non-uniform fuel distribution 
(as expected)

Effects of fuel injector 
clocking

Significant asymmetry, 
potentially beyond clocking
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Fuel/Air Mixing vs. FAR

Mean PLIF fields 𝑝𝑝3 = NC,𝑇𝑇3 = 800 F

Highest 𝑇𝑇4
Decreasing 𝑇𝑇4 (FAR)

Lift-Off

Mean OH* CL

Pilot

Mains
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Fuel/Air Mixing vs. FAR

Mean PLIF fields 𝑝𝑝3 = NC,𝑇𝑇3 = 800 F

Highest 𝑇𝑇4
Decreasing 𝑇𝑇4 (FAR)

Lift-Off

In all data sets, lower flame 
lifts first (at higher FAR)

Complete lift-off
(effects of absorption apparent)

Mean OH* CL
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Fuel/Air Mixing vs. FAR

RMS PLIF fields on same 
colormap
• Considerable temporal 

variation

Highest 𝑇𝑇4
Decreasing 𝑇𝑇4 (FAR)

Lift-Off
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Other Experiments Observations

• Mie scatting fields show good vaporization

• PLIF and Mie show potential to improve fuel uniformity
– Potential of lower emissions and improved stability through more 

uniform mixing

• LII shows very little nvPM
– Had to “hunt” for nvPM
– Very little found (highly intermittent) in downstream region of 

mains
– Primary particle size was below the detection limit

• To be improved for next campaign
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LES Overview
It currently is unclear how well industrial standard combustion LES 
practice, developed for other combustor architectures, works for LPP

Georgia Tech GE Aviation
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Simulation Design and Setup

• Common computational domain 
used by both GE and GT
• Include all geometric features of 

pilot, burner nozzles, wall cooling 
holes, enclosure walls

• GE Fluent calculations include 
both plenum and combustion 
chamber

• GT RAPTOR calculations begin at 
burner inlet (i.e., burner nozzle 
inlets, etc.)

• Boundary conditions extracted from 
GE calculations and adapted for 
GT calculations; i.e., unsteady 
inflow velocities, temperature, 
mixture state, liquid fuel spray 
distribution, etc.
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Simulation Design and Setup

• Boundary conditions extracted from 
GE calculations and adapted for 
GT calculations; i.e., unsteady 
inflow velocities, temperature, 
mixture state, liquid fuel spray 
distribution, etc.

Partially premixed gas 
laden with liquid droplets
• Non-uniform within a 

premixer, between 
premixers, and in time

Radially swirling air into 
central liquid fuel jet

Significant airflow through 
cooling holes that is 

spatially non-uniform



15

Treatment of BCs

• Time-evolving turbulent flow dynamics 
reconstructed using Synthetic Eddy Method 
(Jarrin et al., 2008)

• Modified to incorporate compressibility effects
• Provides time-evolving turbulent inflow 

conditions that account for nonuniformities in 
the premixers

Nonuniform mean profiles, Reynolds-stresses, and 
integral-scale distributions extracted

Nonuniform drop-size, temperature, and velocity 
distributions extracted                                

(processed to eliminate parcel approximation)

Data parameterized as a function of radial and 
azimuthal locations across inlet planes

Combined input used to generate correlated time 
dependent boundary conditions via SEM 

Correlated, 
fully-coupled, 
time-evolving, 
multiphase 
inflow condition 
with identical 
statistics
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Progression of Model Predictions … 

Velocity Temperature

• Analysis of sub-model accuracy and performance in a complex geometric environment
– Turbulent velocity and scalar mixing
– Turbulent mixed-mode combustion
– Finite-rate chemical kinetics and combustion instabilities
– Emissions and soot generation
– Heat transfer and needs related to wall interactions
– Best practices for model implementation
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Conclusions and Future Work

• Novel CST LPP combustor designed, fabricated, deployed, 
operated, and measured

• Very encouraging emissions and stability
– In line with forward-looking objectives

• Optical data helping understand limiting phenomena and 
guide refinements

• LES workflow complete and simulations running

• Year 2 focuses
– Understand combustion dynamics

• Flame transfer functions
• Thermoacoustic modeling

– Improved measurements, e.g. reduce LII detection limit
– Systematic analysis of industrial and first-principles LES
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