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Project Overview 
The project focuses on developing a qualitative and quantitative understanding of factors that can help the establishment of 
biofuel supply chains aimed at supplying alternative jet fuels. Efforts are being made to establish these supply chains. 
However, many of these efforts are challenged because of a lack of clarity regarding the incentives that stakeholders would 
require to engage in these supply chains and devote their resources to invest in the facilities required for these supply chains. 
To this end, the project has two goals: 

1. Develop proforma cash flows that represent the financial status of various participants in biofuel supply chains for



alternative jet fuels to inform a transparent risk-sharing tool, and  
2. Understand the policy landscape that exists in various parts of the U.S. to encourage these supply chains and 

identify further policy initiatives that may be needed.   

 
Task 1.3.1 – Risk-Reward Profit Sharing Modeling for First Facilities 
The Pennsylvania State University 
 
Objective 
Develop a transparent risk-sharing tool to provide all partners with an understanding of the cash flows and risks faced by 
all supply chain partners. 
 
Research Approach 
We first collected a large number of risk-sharing tools that have been proposed in the supply chain literature. Subsequently, 
we narrowed the list down to 9–12 mechanisms. We created an Excel-based framework in which the cash flows of all supply 
chain partners are modeled by using the numbers from the techno-economic analyses developed by WSU. This framework 
incorporates the risk sharing mechanisms.  
 
Milestone 
We developed the Excel models for four realistic configurations by using data from techno-economic analysis models from 
WSU.  
 
Major Accomplishments 
We developed an Excel-based framework showing the cash flows of four key stakeholders of alternative jet fuel supply chains: 
farmers, preprocessors, refineries, and airlines. The framework shows various risk-sharing contracts that each of the 
stakeholders can extend to others, as well as the financial burden or opportunity associated with these mechanisms. The 
framework also shows the government’s financial burden of supporting these mechanisms. The framework is developed for 
four levels of refinery capacities. Overall, this framework can be used as a decision support tool by various stakeholders to 
determine whether to engage in alternative jet biofuel supply chains and negotiate with each other.  
 
Publications 
We anticipate publishing a paper based on combined work from the last year and the coming year.  
 
Outreach Efforts 
The tool has been presented and discussed at three ASCENT advisory committee meetings.  
 
Awards 
None 
 
Student Involvement  
None 
 
Plans for Next Period 
We were planning on running laboratory studies with graduate students. However, the behavioral research lab was closed at 
Penn State due to the COVID-19 situation. We will run these studies when students are back to campus. We would be able to 
run these studies only when students are able to interact with each other in a simulated negotiation environment. We will 
provide the tool and a training in use of the tool to project sponsor. 

 
  

 

 

 

 



Task 1.3.2 – Additional Quantification of Risk and Uncertainties in Supply 
Chains (Foundational Part of Task Above) 
The Pennsylvania State University 
 
Objective 
Develop methods to rely on expert judgments to quantify uncertainties associated with biofuel supply chains.  
 
Research Approach 
We developed a new econometric approach to quantify probability distributions of uncertain quantities such as yield or 
demand when a panel of experts provides judgments regarding the most-likely values. This approach exploits the well-
known theory of generalized least squares in statistics for the context in which historical data are available to calibrate expert 
judgments or when these data are not available.  
 
Milestones 
We have described the method in two manuscripts provided as attachments with this ASCENT annual report. In the first 
manuscript, Using Subjective Probability Distributions to Support Supply Chain Decisions for Innovative Agribusiness 
Products, we develop a two-stage procedure to calibrate expert judgements for the distribution of biofuel uncertainties, such 
as the uncertain yield of new varieties of oil seeds, demand, or selling price. In the first step of the procedure, we calibrate 
the expert judgements by using historical data. Specifically, we use prior judgments provided by experts and compare them 
with actual realizations (such as predicted yield versus actual yield) to determine the frequency with which each expert over- 
or underestimated the uncertainty, e.g., Expert 1 underestimated the yield 60% of the time, but Expert 2 underestimated the 
yield 90% of the time. In the second manuscript, Optimal Aggregation of Individual Judgmental Forecasts to Support Decision 
Making in a R&D Program, we use this information to determine the optimal way to aggregate the experts’ judgments to 
determine the mean and standard deviation of the probability distributions. In the second manuscript, we develop a new 
optimization protocol to determine the optimal acreage for growing specific crops, by taking into account the estimated 
mean and standard deviation as well as incorporating the variability in these estimates.   
 
Major Accomplishments 
Theoretical development and a numerical study have demonstrated the promise of this approach.  
 
Publications 
One paper has been accepted. The second paper is finished.  
 
Outreach Efforts 
N/A 
 
Awards 
None 
 
Student Involvement  
None 
 
Plans for Next Period 
The second paper has been submitted for review. It will be sent out for a publication during this period.  

 
Task 1.3.3 – Supply Chain Risk Analysis Tools for Farmer Adoption 
The Pennsylvania State University 
 
Objectives 
Understand farmers’ risk preferences over a long duration and how these preferences affect their decisions to grow crops 
that can support alternative jet fuel supply chains   
 

 

 

 

 



Research Approach 
We surveyed farmers to understand their risk preferences over extended durations. Specifically, we showed them sample 
yield ranges over extended periods and asked them to estimate the lowest equivalent guaranteed yield that they would be 
willing to accept given the uncertain yields. We used these responses for statistical analyses.   
 
Milestones 
We have completed the survey and finished a manuscript based on the survey. 
 
Major Accomplishments 
We compiled data from 43 farmers in central Pennsylvania regarding their preferences given the uncertain yields from their 
land. The results quantify the loss of value that farmers attribute to an uncertain yield. The reported results are for both 1-
year and 10-year horizons. For the 10-year horizon, we also report results with an initial yield buildup, as is the case with 
most biofuel crops. The key takeaways from this study are that: (a) farmers’ valuation of a new crop decreases acutely as the 
uncertainty in yield increases, and (b) the initial build-up period of low yields can be a large deterrent to farmers’ adopting 
new crops for the purpose of supporting biofuels.  
 
Publications 
The paper was finished and was provided to the sponsor.  
  
Outreach Efforts 
N/A 
 
Awards 
None 
 
Student Involvement  
None 
 
Plans for Next Period 
The results in the first version of the paper revealed something interesting: when faced with uncertain yields, say from x to 
y, farmers were willing to swap their output for a consistent output at levels that were lower than x. This finding was 
surprising at first. However, the research team has recently found prior research in economics documenting similar behavior. 
We would like to collect more data during the year to bolster the manuscript, pending a resolution to the COVID-19 situation.  
 
Task 1.4.1 – National Survey of Current and Proposed State and Federal 
Programs that Monetize Ecosystem Services 
The Pennsylvania State University 
 
Objective 
Conduct a survey and summarize current and proposed state and federal programs to monetize ecosystem services.  
 
Research Approach 
This Task builds on and continues the work done under ASCENT Project 01, Task 8.1, which focused on the biomass and 
water quality benefits to the Chesapeake Bay watershed. Under this Task, we examined the biofuel law and policy landscape 
of the Pacific Northwest and Southeast regions, as well as the state of Hawaii. We also researched federal biofuel law and 
policy. We have had a change in personnel working on this project. Lara Fowler remains the lead; however, Gaby Gilbeau left 
the project in August 2018, and Ekrem Korkut joined the project during the fall of 2018. 
 
Milestones 
We have captured this research in three region-specific white papers describing the biofuel law and policy incentives, and 
the ecosystem service drivers for the subregions. In addition, we added another U.S.-level white paper to the list of tasks. 

• Project 01A, Tasks 3.1, the Pacific Northwest. 

 

 

 

 



• Project 01B, Task 3.2, Hawaii. 
• Project 01E, the Southeast. 

 
Copies of these documents are available online:  

• Western U.S. policy paper (with a focus on Washington 
State): https://psu.box.com/s/l9ektkcr8lk10gjqu93l4jmm9djmnmhf 

• Southeast policy paper (with a focus on 
Tennessee): https://psu.box.com/s/iyeowdfo0447t4ya8dl5md2zu5un48u6 

• Hawaii policy paper: https://psu.box.com/s/92a7tl19tpphg69t4ff12t9d4rdshgq1 
• Federal level white paper: https://psu.app.box.com/file/629416796137?s=5r15l1xg8yeg1nnms1nfjx023p3wzkfu 
• Poster: https://psu.box.com/s/20ugtneqsmu8ufrjrahos87hp47dk2zm 

 
Major Accomplishments 
We have captured this research in three regional white papers describing the biofuel law and policy incentives. In addition, 
we have researched and finished drafting a document summarizing aviation and biofuel at the national level in the U. S. As 
part of this, we have examined how legal and policy drivers from other parts of the world are affecting U.S. incentives. 
 
Publications 
The white papers have been sent to ASCENT leads for review and comment (including Nate Brown and Michael Wolcott); 
comments on the federal white paper have been addressed and incorporated.  
 
We are working on turning these papers into publications for the Frontiers in Energy special edition. In addition, we have 
circulated the white papers to ASCENT team members for their background and information.   
 
Outreach Efforts 
Lara Fowler and Ekrem Korkut created and shared a poster for the September 29, 2020 annual meeting. This poster is linked 
above and addresses the federal, state, regional and international aspects of aviation biofuel law and policy.   
 
Awards 
None 
 
Student Involvement  
Ekrem Korkut continues to be a full-time student at the Penn State School of International Affairs. He has continued to 
work on the ASCENT project as a part-time research assistant while conducting his studies. 
 
Plans for Next Period 
As noted above, we are turning the existing white papers into published papers (at least one policy related piece for the 
Frontiers in Energy special issue) and planning on an additional review at the state/regional level. In addition, we are working 
with other ASCENT team members on law and policy research questions they have identified, including how landfill 
regulations shape opportunities in Hawaii and other related topics.  

 
Task 1.4.3 – Help Support Stakeholder Engagement Efforts 
The Pennsylvania State University 
 
Objective 
Facilitate dialogue among producers, industry, government, and other affected stakeholders. 
 
Research Approach 
Our work under this objective focused on stakeholder engagement and facilitation of effective dialogue to help bridge the 
gaps among producers, industry, government, and other affected stakeholders. This role supports other team members’ 
needs. 
 
 

 

 

 

 



Milestone 
These efforts supported the stakeholder engagement efforts led by other teams, including but not limited to the regional 
partners identified in ASCENT Project 01, Tasks 3.1, 3.2, and 3.3. 
 
Major Accomplishments 
This set of tasks has been more limited, with no major accomplishments to date. We have continued to participate in 
discussions and calls related to potential stakeholder engagement needs.  
 
Publications 
N/A 
 
Outreach Efforts 
N/A 
 
Awards 
None 
 
Student Involvement  
None 
 
Plans for Next Period 
Future work under this objective will include presenting to the project partners on facilitation skills and tactics. Additional 
support for regional projects will be offered as needed for facilitation and stakeholder engagement sessions as the regional 
projects move to the deployment stage. 
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Abstract

This research is motivated by a research problem in agribusiness R&D environments where a
decision maker such as a farmer or a firm makes investment/selection decisions for a portfolio of
innovative products for nascent supply chains and relies on experts to quantify key uncertainties
for these products in the form of their probability distributions. Previous literature suggests that
the subjective distributions obtained from domain experts contain judgmental errors. But no
clear guidelines exist for incorporating these subjective distributions in managerial decisions. In
this paper we (i) develop prescriptive tools to make these decisions using subjective probability
distributions with judgmental errors, and (ii) identify the benefits of incorporating judgmental
errors present in subjective probability distributions into decision making. We first develop
a hierarchical uncertainty model where the outer level models the judgemental errors in the
expert’s judgments and the inner level models the supply chain resource allocation problem
conditioned on magnitude of judgmental errors. To solve this hierarchal model, we develop
a copula based dependent decision tree approach. The approach is efficient and permits scal-
ing up to a large number of uncertainties present in a typical supply chain with a portfolio
of products. Numerical results for representative industry data in the agribusiness domain
show that ignoring the uncertainty in subjective probability distributions can lead to a (i) loss of
profit for a farmer by 2-5%, and (ii) incorrect R&D portfolio selection decisions by as much as 24%.
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1 Introduction

The human element – human thoughts, actions, and decisions – plays an important role in the

development of new supply chains. This element is instrumental in idea generation and evaluation,

and managing the transition of an idea into a product, and these aspects have been studied ex-

tensively in the past. This paper focuses on an aspect that has received relatively less attention

in this literature – managing supply chains for portfolios of new products when the key uncertain-

ties associated with new products are obtained from experts in the form of subjective probability

distributions.

Subjective probability distributions are obtained from experts and are used for forecast-

ing/decision making when sufficient historical data are not available for constructing statistical

distributions. The lack of historical data is especially common in industries engaged in developing

a new class of products. Our contextual focus is on one such business – biofuel supply chains –

that is in nascent stage. Biofuel supply chains use specifically developed crops such as Miscanthus,

Camelina etc to provide biomass that is converted into fuel in specifically designed refineries using

customized chemical processes. A critical challenge in this industry to develop new varieties of

crops that will provide higher energy density while also being able to thrive in local weather and

geographical conditions. These new varieties are developed by teams of plant biology experts. A

frequent issue faced by these teams pertains to selecting which varieties to pursue based on limited

test information. Teams seldom have have the time and resources to collect extensive data to build

systematic models to identify patterns in previously successful varieties and then identify other

potentially high performance varieties by exploiting these patterns. More often, the teams rely on

their judgment and intuition to determine the likely distribution of the yield of new varieties. Based

on this information and the impact of likely yields on supply chains they select a set of varieties to

pursue further.

The prior literature discusses two approaches for estimating subjective distributions in such

situations. In the first approach the firm seeks point forecasts from a number of experts or managers

(we will use the words managers and experts interchangeably in the rest of the paper). The

average of these forecasts provides the mean of the distribution; the variance of the distribution is

proportional to the variance of the point forecasts obtained from managers (Gaur et al. 2007). But



this approach is applicable only when a large number of managers with the contextual knowledge

are available to provide judgments. In contrast in many instances as few as one or two experts

may be available to provide judgments for the probability distributions and when that happens

this theory is not applicable.

A second approach discussed in the literature focuses on eliciting probability distributions from

single or more experts, using various protocols. These protocols include obtaining direct estimates

of probability distributions, i.e., asking an expert directly to specify the mean and variance or

standard deviation such as those discussed in Clemen et al. (2000); and indirect methods in which

moments of probability distributions are deduced from quantile judgments, e.g. weighted linear

functions of the quantile judgments of 5th, 50th, and 95th quantiles, such as discussed in Bansal

et al. (2017). This literature recognizes that the experts are not perfect – their direct or indirect

judgmental estimates for means and standard deviations are not always equal to the unknown

true values – and that these subjective estimates are subject to judgmental errors comprised of

systematic biases and random inconsistencies or noise.

But this literature does not address how subjective distributions obtained from one or more

experts should be modeled in order to make supply chain decisions for portfolios of new products.

In this paper we develop a mathematical approach to accomplish this task. Specifically, we focus

on three questions:

1. How can the judgmental errors in subjective distributions (as characterized by their mean

and standard deviation) obtained from an individual expert be quantified?

2. Once quantified, how can these judgmental errors be incorporated into decision making for

supply chains in a tractable and efficient manner?

3. What are the benefits of accounting for judgmental errors during decision making?

To answer the first question we discuss two approaches to quantify the judgmental errors present

in the moment judgments provided by experts for probability distributions. This quantification

separates the bias – the systematic component of the judgmental errors – from the noise. To

answer the second question we formulate a general supply chain portfolio resource allocation decision

problem that explicitly models the quantified bias and noise in moment judgments, and then develop



an efficient Copula based solution to the formulation in order to provide a real time decision support.

We first explain the need to incorporate the bias and noise in moment judgments into portfolio

decision making, followed by technical challenges of solving such a formulation. Intuition suggests

that the bias and noise present in the moment judgments provided by an expert should not be

ignored during decision making for a portfolio involving multiple products. Ignoring the bias

systematically leads to an underestimation or overestimation of the mean and standard deviation,

which would systematically misestimate the cash flows from a product in the portfolio. The noise

is the random error component in expert’s judgmental errors, and is modeled as a random variable

with the mean of 0 with an associated distribution. Ignoring the noise leads to an underestimation

of the uncertainty in the portfolio, which leads to an incorrect portfolio selection/allocation decision

as well as underestimating the uncertainty in the cash flows from the portfolio selected.

But no clear modeling approaches have been documented in the literature for incorporating bi-

ased and noisy moment judgments into decision making. Accordingly, we first develop a hierarchial

formulation to model the portfolio management problem with judgmental errors in moment judg-

ments. In this hierarchical formulation the outer level represents the judgmental errors in moment

judgments for yield distributions. The inner level represents the supply chain resource allocation

problem conditioned on the the magnitude of the judgmental errors.

This explicit incorporation of judgmental errors in moment judgments increases the complexity

and problem size of portfolio selection/allocation problems. For instance, consider a supply chain

in which a firm invests in growing a portfolio of 20 varieties of crops for the purposes of biofuel.

The presence of judgmental errors in moment estimates for the yield distributions adds further

40 uncertainties (one distribution each for the judgmental error in the estimate of the mean and

standard deviation for the yield distribution of each seed) to the already present 20 uncertainties

in the portfolio. The optimal resource allocation decision for these varieties needs to be made over

all possible scenarios of judgmental errors and then for all possible yield scenarios that come off

of each error scenario. The correlations between the judgmental errors for the mean and standard

deviations, if present, must also be incorporated appropriately.

At the same time portfolio decisions are typically made in managerial discussions that seek to

accommodate specific preferences of various functions, e.g. marketing, finance, operations, of firms

(Jones et al. 2001, Bansal and Nagarajan 2017). To provide a decision support to such discussions



in a real time mode, approaches that can solve portfolio optimization problems efficiently and

provide a quick what-if analysis are desirable. Accordingly we develop a copula based dependent

decision tree approach to solve the hierarchial formulation. The approach is precise and efficient

in evaluating the cash flows from various projects in a portfolio, and permits scaling up to a

large number of uncertainties as is needed for managing multi-asset portfolios. Finally, numerical

results for representative industry data show that ignoring the uncertainty in subjective probability

distributions can lead to a (i) loss of profit for a farmer by 2-5%, and (ii) incorrect R&D portfolio

selection decisions by as much as 24%.This loss of profit stems from, among other sources, a

systematically incorrect allocation of resources between a portfolio of crops.

The remainder of this article is organized as follows. We discuss related literature in the rest of

this Section. In Section 2, we present a portfolio selection problem and then discuss two models.

The first model ignores the judgmental uncertainty in the moment estimates of the distributions,

and the second model incorporates this uncertainty. We then highlight the additional complexity

in the second model. In Section 3, we discuss the solution. In Section 4, we present a numerical

analysis to quantify the benefit of incorporating judgmental errors into the firm’s portfolio decision.

Section 5 contains a summary.

1.1 Literature Review

The process of developing new products relies heavily on human element, and the existing

literature has focused on three aspects of managers’ behavior and subjective decisions during the

new product development process. The first aspect is on managing the idea generation process.

Existing literature investigates the characteristics of individuals and teams that lead to better ideas

for new products, environments that stimulate high-quality idea generation, biases in designers and

innovators during short-listing designs for a further development, and the processes that lead to

innovative designs verses derivative designs (see, e.g., Toubia 2006). The second stream of literature

focuses on managing the process of transforming an idea or a design into a marketable product

once the idea/design has been finalized. This literature addresses how managers use judgments

to allocate time between planning and implementation activities, and between development and

testing activities (see, e.g., Annacchino 2003).

A third stream of literature, to which we contribute to, focuses on estimating uncertainties



associated with new products to make business decisions to manage the new products. The common

theme in this literature is that often relevant historical data do not exist for new products to

quantify various business uncertainties and a firm must rely on managers’ subjective judgments

to estimate the uncertainties. Gaur et al. (2007) focus on the case when multiple experts are

available for estimating the distributions of the uncertainties. They suggest that the firm collects

a point forecast from each manager and treats the forecasts obtained as iid realizations from the

underlying population. It follows from the properties of sampling distributions that the mean of

the point forecasts is a good predictor of the population mean. Further the variance in the point

forecasts is directly proportional to the true variance; to determine the appropriate proportionality

constant they use a calibration exercise in which the same team of experts provides points forecasts

for a number of distributions for which historical data exist. A regression of the true variances of

these distributions on the forecasts’ variance provides the proportionality constant. This approach

requires two inputs to be successful — multiple managers (in order to be able to compute forecasts’

variances), and calibration distributions (in order to determine the proportionality constant). But

this approach does not perform well when only a small number of experts – such as two or three –

are available to provide judgments.

Recent developments by Baker and Solak (2011) and Kettunen and Salo (2017) adopt a differ-

ent approach that can use judgmental estimates from a small number of experts to make portfolio

decisions. Baker and Solak (2011) study the problem of selecting a portfolio of unproven technolo-

gies to invest in. They directly elicit a number of points on the probability distributions of the

efficiencies of various technologies in the future from an expert. Then they use this discretized

elicited distribution in a stochastic program to determine the optimal investment levels. Our work

diverges from Baker and Solak (2011) in various aspects. First, we quantify the judgmental errors

present in the subjective distributions and make the portfolio selection decision while accounting

for judgmental errors. Second, we identify specific ways in which ignoring judgmental errors leads

to suboptimal decision making in portfolio decision making. In our context of integrated project

selection and production planning, we find that the suboptimality can be significant. Finally, we

focus on eliciting the moments of distributions that enables firms to make nuanced decisions for

portfolio selection.

Kettunen and Salo (2017) focus on project portfolio selection and show that when experts



provide subjective judgments for project valuations, the errors in the valuations could lead to

a mis-specification of the risk measure of the portfolio. They then suggest a simulation based

calibration based approach to correctly evaluate the selected portfolio. In contrast, we focus on

portfolio selection itself in the presence of judgmental errors, and develop insights for the impact

of ignoring judgmental errors on the resource allocation decision.

2 Problem Description

2.1 Portfolio Selection and Management Under Uncertainty: Preliminary

Model and Assumptions

Consider a portfolio of i=1,2,...,N products of a supply chain with associated random variables

X = [X1, X2, . . . , XN ]T with each random variable Xi corresponding to a unique asset i. These

random variables could be for uncertain demand or supply or price or a combination of these

factors. The distributions of X are estimated using expert judgment. The distribution of Xi has

two parameters θi = [θi1, θi2] with the pdf denoted as f(xi; θi). The vector of parameters θi is

denoted as θ = [θ1, . . . , θN ]. Consistent with Lindley (1987) we assume that the functional form of

the pdf f(xi; θi) is known from the business context. Other uncertainties with available statistical

distributions from historical data may also be present in the decision problem, and they can be

easily modeled within our framework.

The portfolio management problem has a span of two periods. In Period 1, the decision

maker chooses the investment levels for the assets, Q = [q1, q2, ..., qN ]T, incurring a per unit cost

C = [c1, c2, ..., cN ]T, i.e. at a total cost of
∑

i

ciqi. We do not make any specific assumption

about the domain of Q except that these decision variables take strictly non-negative values, as is

the norm in portfolio selection/allocation problems. Each qi can take binary values to represent

Yes/No investment decisions or continuous values to represent varying levels of investments such

as amount of inventory purchased or capacity used for production. This decision is subject to

multiple constraints collectively denoted as g(Q) ≤ L where g(Q) = [g1(Q), g2(Q), ..., gM (Q)]T

and L = [l1, l2, ..., lM ]T. These constraints could correspond to resource limits on investments in

projects of specific categories, relationships between various investments such as choosing a specific

number of projects of a specific class, and total capital investment limits. In Period 2, the decision



maker observes the uncertainty realizations x = [x1, x2, ..., xN ]T and obtains the payoff Π(Q,x).

His two-stage expected profit maximization problem is stated as

max
Q≥0

−
∑

i

ciqi + E[Π(Q,x)]

)

(1)

s.t. g(Q) ≤ L (2)

We focus on the case where the payoff Π(Q,x) is separable in the outcome of each uncertainty Xi.

We next discuss obtaining expert judgments for the parameters θi. In the rest of the develop-

ment, we will assume that f(xi; θi) is a location-scale distribution. The family of Location-scale

distributions includes some common distributions such as the Uniform distribution, Normal dis-

tribution, and the Gumble distributions that are used in a variety of operations and supply chain

contexts. In this framework the parameters θi = [θi1, θi2] represent, without a loss of generality, the

mean and standard deviation, respectively, of the uncertainty of the random variable Xi (Casella

and Berger 2002).

2.2 Expert Input for Probability Distributions

In the absence of historical data, the parameters θi are obtained using expert judgments. We

discuss here two frequentist approaches to obtain these parameters, (i) the direct approach, and

(ii) the indirect approach. These approaches have the same underlying principle as Cooke (1991).

Cook suggests asking experts for the probability of occurrence of a specific set of events and then

compare these probability judgments against the observed true values to calibrate the experts.

We extend this approach to calibrate the expert’s judgments for the mean and standard deviation

using the direct and indirect approach. In both approaches the expert’s judgments are compared

against actual data for a series of available distributions and the bias and noise in the judgments is

quantified. The information generated during this quantification process then provides the optimal

way to process the expert’s judgments for those distributions that do not have prior data.



2.2.1 Direct Approach

In the direct approach the expert provides direct estimates of moments θ̂rj ; j = 1, 2 for a number

of distributions r = 1, 2, . . . , R for which historical data are available. The actual values θrj are

regressed on the judgments θ̂rj to obtain the regression lines:

θrj = aj + bj θ̂rj ; j = 1, 2; r = 1, 2, ..., R

The standard errors of the two regressions are denoted as σ2
se,j ; j = 1, 2, and the correlation between

the fitted residuals for j=1,2 is denoted as ρθ. This calibration information is used for estimating

future distributions i = 1, 2, ..., N that do not have prior data, as follows. We first an obtain expert’s

judgments θ̂ij . For these judgments the marginal distribution of parameter θij , φij(θij ; αij , βij) with

hyper parameters αij , βij , has the mean E[θ̂ij ] = a + bθ̂ij and the standard deviation equal to the

standard error σ2
se,j ; j = 1, 2. The correlation between the marginal distributions is equal to ρθ.

To determine the parametric form of the marginal distributions φij(θij ; αij , βij), we determine

the best fitting distributions for the errors in estimates θ̂rj in the calibration set of R distributions,

eθ
rj = a+bθ̂rj−θrj . Moment matching provides the parameter values αij , βij ; j = 1, 2. For example,

if the marginal distributions φi1, φi2 are normal, then αij = aj + bj θ̂ij and βij = σse,j . The joint

distribution of parameters θi = [θi1, θi2] is denoted as φi(θi; αi, βi, ρ
θ). Finally, the distributions

for two products, say i and k, φi(θi; αi, βi, ρ
θ) and φk(θk; αk, βk, ρ

θ) respectively for i 6= k are

mutually independent. For notational brevity, we denote the joint distributions φi(θi; αi, βi, ρ
θ) as

φi(θi).

2.2.2 Indirect Approach

In the indirect approach, estimates for quantiles are used to deduce distribution parameters.

Bansal et al. (2017) recently showed that if an expert provides unbiased estimates of quantiles

v̂k; k = 1, . . . ,m corresponding to a set of probabilities pk and standardized values zk of a location

scale distribution, and the variance-covariance matrix of the judgmental errors in these percentile

judgments is Ω, then the estimates of θj ; j = 1, 2 are obtained as θ̂j = Wj [v̂1 . . . v̂m]T where

WT
j = aT

j (ZTΩ−1Z)−1ZTΩ−1 (3)



where the matrix Z =






1 1 1

z1 z2 z3




, aT

1 = [1, 0] and aT
2 = [0, 1]. The variances and covariances of

estimates are equal to Var[θ̂j ] = aT
j (ZTΩ−1Z)−1aj and Covar[θ̂1θ̂2] = aT

1 (ZTΩ−1Z)−1a2.

We next operationalize this result in our context. Consider a number of calibration distributions

r = 1, 2, . . . , R for which historical data exist and true parameter values θrj are known. For each

distribution r, the expert provides his judgments for M quantiles v̂rm; m = 1, 2, 3...,M . The

quantile judgments are compared with the true values vrm to obtain the error,

erm = v̂rm − vrm ; m = 1, 2, ...,M ; r = 1, 2, ..., R (4)

Subsequently, the bias in each quantile is estimated as

δm =
∑

r

erm/R ; m = 1, 2, ...,M (5)

Using this bias, the unbiased errors in the estimation of the M quantiles are obtained as

eu
rm = v̂rm − δm; m = 1, 2, ...,M ; r = 1, 2, ..., R (6)

From these M streams of errors, a M × M variance-covariance matrix Ω is obtained, which then

provides the weights WT
j in (3). Once this calibration is complete, the expert’s percentile judg-

ments for new distributions are processed as follows. The expert provides his quantile judgments

[v̂i1, v̂i2, ...v̂iM ] for the distribution of product i. Then the marginal distribution of parameter θij ,

φij(θij ; αij , βij) with hyper parameters αij , βij , has the mean E[θ̂ij ] = Wj [v̂i1−δ1, v̂i2−δ2, ..., v̂iM −

δM ]T, the variance Var[θ̂ij ] = aT
j (ZTΩ−1Z)−1aj , and Covar[θ̂i1θ̂i2] = aT

1 (ZTΩ−1Z)−1a2. To deter-

mine the parametric form of the marginal distributions, we determine the best fitting distributions

for the errors in estimates θ̂rj in the calibration set, eθ
rj = Wj [v̂r1−δ1, v̂r2−δ2, ..., v̂rM −δM ]T−θrj .

Moment matching provides the parameter values αij , βij ; j = 1, 2, similar to the direct elicitation.

In the remainder of the article we will not differentiate between whether the distributions of

parameters φi(θi) were obtained using the direct or the indirect approach.



3 Incorporating Subjective Distributions into Supply Chain De-

cision Making

We now focus on supply chain decision making for a portfolio of products when the parameters

θi are obtained through subjective judgmental estimates and have the distribution φi(θi). We first

setup a benchmark case.

3.1 Known Parameter Portfolio Problem

Under traditional optimization framework, the firm’s problem (1)–(2) is one of maximizing the

expected profit from the portfolio of products over the possible realizations of the uncertainty X

assuming that the parameters θ are known deterministically, and it is formulated as:

KPP: max
Q≥0

Πk(Q) = −
n∑

i=1

ciqi +
∫

xn

. . .

∫

x1

Π(Q,x)f(x; θ)dx1dx2 . . . dxn (7)

s.t. g(Q) ≤ L (8)

The optimal solution of this problem is denoted as Qk∗. In this Known Parameter Problem (KPP),

typically the mean values of the distributions of uncertain θ are used. This setup ignores the

judgmental errors in the estimates of parameters θ. Nevertheless, it serves as a useful benchmark

for quantifying the benefit from incorporating judgmental errors present in the estimates of θ into

portfolio decision making.

3.2 Hierarchical Formulation for Unknown Parameter Portfolio Problem

We next develop the formulation that explicitly incorporates judgmental errors in the estimates

of θ. Given the uncertainty in parameters θ with distributions φi(θi), the firm should seek to make

the optimal decision Q∗ over all possible values of θ and the ensuing uncertainty in X with the pdf

f(xi; θi) for a specific value of θi. We formulate this dynamic using a hierarchical formulation where

in hierarchy level 2 or the inner level, expected payoff over all possibilities of X given specific values

of θ is considered, as
∫

xn

. . .

∫

x1

Π(Q,x)f(x; θ)dx1dx2 . . . dxn. Hierarchy level 1 or the outer level

considers all possibilities of θ for the expected payoff from Hierarchy 2. The following formulation



represents this hierarchical optimization framework for the model (1)–(2):

UPP: max
Q≥0

Πu(Q) = −
n∑

i=1

ciqi

+
∫

θn

. . .

∫

θ1

(∫

xn

. . .

∫

x1

Π(Q,x)f(x; θ)dx1dx2 . . . dxn

)

φ1(θ1) . . . φn(θn)dθ1 . . . dθn (9)

s.t. g(Q) ≤ L (10)

The optimal solution of this problem is denoted as Qu∗. Note that this formulation distinguishes

between two sources of uncertainty. The parameters θ are uncertain because the expert’s judgments

for these parameters/moments have judgmental errors. There exist true values of these parameters

but they remain unknown in both Period 1 and Period 2. This is the epistemic uncertainty in

the model. The decision maker only knows the probability distributions φi(θi) over these true

values, from the calibration exercise with the expert. In contrast, the values of realizations x for

payoff variables X are unknown in Period 1 because they have not occurred yet, but they are

known in period 2 when the payoff Π(Q,x) is observed. Hence the uncertainty in X is an aleatory

uncertainty. We call this formulation (9) – (10) as the unknown parameter problem (UPP).

3.3 Structural Comparison of KPP and UPP

In the remainder of this paper, we assume that KPP is concave and has a unique solution. This

assumption helps us focus exclusively on the complexity introduced by an imperfect knowledge of

θ. We first establish a result that is immediate from the definitions of KPP and UPP.

Proposition 1 If KPP is concave, then UPP is also concave.

This result implies that if we find a solution to the UPP, it must be the only solution to the

problem. This property lends some smoothness characteristics such as lim
V ar(θ̂i1→0,θ̂i2→0)

Qu∗ = Qk∗,

and lim
V ar(θ̂i1→0,θ̂i2→0)

Πu(Qu∗) = Πk(Qk∗). The next result establishes some natural relationships

between the expected profits from these systems.

Proposition 2 Πk(Qk∗) > Πu(Qu∗) > Πu(Qk∗)

The proposition has two implications. First, ignoring the parametric uncertainty always leads to

optimistic estimates of expected profit, as Πk(Qk∗) > Πu(Qu∗). In other words, a disappointment



or loss will be incurred on average by ignoring the uncertainty in expert’s judgments. This expected

loss is equal to

Δo = Πk(Qk∗) − Πu(Qk∗) (11)

where the subscript o denotes the bias due to the optimism of the error ignoring approach. Equiv-

alently, this amount is also equal to the value of incorporating the judgmental noise present in the

estimates of θ in the decision making process.

Proposition 3 Let Va denote the variance of the estimate of moment/parameter a ∈ {θi,j} ob-

tained from an expert. Then ∂Δo
∂Va

≥ 0.

This result states that as the expert becomes less precise, i.e., the noise in his estimates increases

the average disappointment from ignoring the noise increases, or alternatively, the value of including

judgmental errors into the portfolio allocation decision increases.

3.4 Challenges in Solving UPP: Illustrative Example

In general the UPP problem (9)–(10) is analytically intractable. To appreciate the challenges

in solving this problem we focus on an illustrative example from the biofuel sector. Suppose that a

large holding farmer or cooperative decides to grow various crops indexed as j=1,2,...,M for biofuel

usage. The production decision problem for the portfolio of crops is as follows. In period 1, the

farmer decides the area qi (number of acres) to use to grow the crop i, incurring a cost of ci per unit

area. The production yield Xi per unit area (bags of hybrid seeds obtained per acre) for hybrid i

is uncertain. The farmer makes the acreage decision subject to the availability of appropriate land

for the crops in quantities L1, L2, ..., LM , i.e. the constraints in (2) are written as:

g(Q) ≤ L
.
= YQT ≤ L (12)

In period 2 the farmer observes the yield xi and the output qixi and tries to meet a known demand

Di. The selling price per unit is si per unit. In period 2, the firm’s profit is equal to:

Π(Q,x) =
∑

i

si min(qixi, Di) (13)



The UPP formulation (9)–(10) in this context is non-trivial to solve due to analytical intractabil-

ity and computational issues. To illustrate this, consider the simplest case of portfolio of size

1 where the farmer produces only one crop for biofuel and the allocation constraint g(Q) ≤ L

is not present. Using (13) as the payoff function the KPP problem (7)–(8) can be written as

max
q

−cq + EX1 min[qX1, D] or alternately as max
q

−cq +
∫ ∞

D/q
Dφ1dx1 +

∫ D/q

−∞
qx1φ1dx1. This for-

mulation is analytically tractable for a number of commonly used probability distributions for X1.

However its UPP form max
q

−cq + Eθ1 (EX1 min[qX1, D]) is intractable. More specifically, we can

write the UPP formulation as

max
q

−cq +
∫

θ12

∫

θ11

EX1 min[qX1, D]φ1(θ1)dθ11dθ12 (14)

The marginal distributions φ1j(θ1j ; α1j , β1j) depend on the data generated during calibration and

may belong to different families in which case the joint distribution φ1(θ1; α1, β1) in (14) will

be analytically intractable. As a result, the integration operation in the formulation (14) above

will be intractable. Even if the joint distribution φ1(θ1; α1, β1) can be expressed analytically, the

integration operation in (14) is likely to be intractable except for the uniform distribution.

For a single crop, the problem above could still be explored numerically using Monte Carlo

simulations using a stochastic linear programming approach. However, such approaches are not

practical for portfolio management problems. The simulation error present in the solutions of these

approaches increases with the number of uncertainties and decision variables. In the UPP problem,

there are n decision variables, and three uncertainties for each decision variable (uncertainty in

Xi, and the uncertainty in θi1, θi,2). Therefore to obtain a high level of accuracy for the portfolio

decision, one would need a large number of random realizations for each of the 3n uncertainties in

the portfolio. For a portfolio of 20 or more uncertainties as is typically the case in biofuel supply

chains, one would need to simulate 60 uncertainties. Simulating several hundred or thousand

scenarios of each of these uncertainties would lead to a formulation of a considerable size. The

solution time of such formulations would be substantial and would not support a real time decision

aid needed for the portfolio decision making.

To address these practical issues, we develop a discretization-based approach to solve UPP

within a decision tree wherein continuous uncertainties are discretized into a limited number of



outcomes. From a technical perspective, decision trees with discrete outcomes of uncertainties are

similar to simulation based methods. Monte Carlo methods essentially approximate the values of

complicated functions by a weighted sum of a large number of simulated scenarios. The scenarios are

drawn randomly and assigned equal probability weights. In contrast, in a decision tree framework

a “clever” selection of very few discrete points and probability weights reduces the computational

burden without sacrificing accuracy. This efficiency benefit is significant for portfolio models where

a large number of uncertainties need to be modeled. Decision tree models with such discretizations

have been shown to perform well when compared to Monte Carlo simulations. Bickel et al. (2011)

and Clemen and Reilly (1999) show that the quality of these discretizations is equivalent to the

several tens of thousands of simulated draws. Finally, from a managerial perspective, the use

of discretization based decision trees aids in understanding of the problem by defining distinct

scenarios, a characteristic not completely shared by simulation methods which are often viewed as

“black boxes” by decision makers.

4 Discretization Based Approach to Solving UPP

We adopt a two-step approach to solve UPP. In Step 1, we use Copulas to create a discrete

decision tree version of UPP. This discretization leads to a intuitively appealing representation and

a tractable formulation. This formulation is solved in Step 2 for the optimal solution Qu∗ using a

standard nonlinear solver.

4.1 Step 1: Use Copulas to Discretize the Parameter Space

We discretize the distributions in the UPP formulation based on its hierarchical structure.

Specifically, for each seed i we create a state of nature tree discretizing the outer level of distributions

of parameters θ, followed by modeling the cash flows Π.

This tree starts with the discretization of uncertainty in parameter θi1 as a set of three possible

outcomes – “up”, “middle” and “down” (the motivation for the section of three point over more or

fewer points is discussed shortly). Similarly for the second uncertainty θi2, a set of three subsequent

states representing three contingent outcomes follows each realization of the preceding state of the

parameter θi1. The final set of nine outcomes fully represent a discrete approximation of the joint



distribution of the two uncertainties of θi1, θi2. More specifically, we first discretize the distribution

of θi1 into a three point distribution with values θi1k; k = 1, 2, 3 for “up”, “middle” and “down”

respectively with probability values pi1k. Then at each of three points θi1k; k = 1, 2, 3 we discretize

the conditional distribution of θi2|θi1k into three values θi2k|θi11, θi2k|θi12, θi2k|θi13; k = 1, 2, 3 with

corresponding probability values pi2k|θi11, pi2k|θi12, pi2k|θi13; k = 1, 2, 3. Therefore there are a total

of 9 points at the end of this discretization. At each end note, we then determine the expected

payoff Π. Figure 1 shows this discretization for the uncertainties in θi,1, θi,2 for the payoff for the

seed problem Π = EXi min[qXi, Di] for deterministic demand.

Figure 1: Representative Normal-Copulas dependent tree for one crop.

Two items are necessary to obtain this discretization, (i) an appropriate discretization scheme

for the distribution of θi1, i.e., specifications of θi1k; k = 1, 2, 3 with the corresponding probability

values pi1k; k = 1, 2, 3, and (ii) conditional distribution of θi2 given specific values θi1k of θi1,

i.e. specifications of θi2k|θi11, θi2k|θi12, θi2k|θi13; k = 1, 2, 3 with corresponding probability values

pi2k|θi11, pi2k|θi12, pi2k|θi13; k = 1, 2, 3. We discuss both issues in §4.1.1 and §4.1.2 respectively.

4.1.1 Discretizations to Use for the distribution of θi1

The distribution of parameter θi1 is obtained from calibrating expert’s judgments as discussed

in Section 3, and can be of any parametric family. One could use a Gaussian Quadrature to obtain

a n point discrete approximation that will match the first 2n-1 moments of this distribution. Em-

pirically, three point discretizations have been found to provide good approximations of cash flows



(see, e.g., Keefer and Bodily 1983, Wang and Dyer 2012). Our selection of three point discretization

is based on this literature. This literature also suggests using a constant set of pre-optimized prob-

abilities (0.185, 0.630, and 0.185) for the realizations (“up”, “middle” and “down”) corresponding

to the 5th, 50th, and 95th percentiles of the continuous conditional distributions. It follows that

[θi11, θi12, θi13] = [Φ−1
θ1i

(0.05), Φ−1
θ1i

(0.50), Φ−1
θ1i

(0.95)] and [pi11, pi12, pi13] = [1/6, 4/6, 1/6]. Note that

these weights also correspond to the PERT calculations in project management literature to de-

termine the expected value of activity duration distributions using the largest, most likely and

smallest values respectively. Therefore these weights also have the advantage of being familiar to

managers.

4.1.2 Construction of Conditional Distributions and Their Discretizations

The marginal distribution of the first uncertainty of θi1 determines its percentile realizations

θi1k; k = 1, 2, 3. We next focus on determining the three percentiles of the conditional distributions

of the random variables θi2k|θi11, θi2k|θi12, θi2k|θi13; k = 1, 2, 3. Consider the case when we calibrated

the expert and found the distributions for the means and standard deviations both to be correlated

and belong to the Gamma family of distributions. For the Gamma distribution, there is no known

tractable functional form for bivariate correlated distributions. In the absence of this joint bivariate

form, the conditional distribution also does not exist in a tractable form. This problem becomes

more severe when the distributions of the mean and standard deviation belong to different families.

To obtain the conditional distributions for such instances, we adopt a Copula based approach. We

first provide a general development and then discuss its application to our context.

A Copula uses the information available for marginal distributions and correlations as input and

provides conditional distributions as output. A Copula is a joint distribution of random variables

Φ(Y1, ..., Yn) = C(Φ1(Y1), ..., Φn(Yn)) to be expressed as a function C(.) of the marginal distributions

Φ(Y1), . . . , Φ(Yn), and fully captures the dependence structure among the uncertainties through the

choice of the copula function C(.) and the dependence measure. See Frees and Valdez (1998), Nelson

(1999), and Embrechts et al. (2001) for an excellent introduction and review on copulas.

We discuss here the use of Normal Copula. This Copula is useful when marginal distribu-

tions do not have fat tails, which is commonly the case for operational uncertainties such as

uncertain demand or supply. A n-dimensional Normal copula C is given by C(u1, . . . , un) =



ΦΣ(Φ−1(u1), . . . , Φ−1(un)). It is derived from a multivariate normal cumulative distribution func-

tion ΦΣ with mean zero and correlation matrix Σ, by transforming the Uniform random variables

(u1, . . . , un) on [0,1] by taking the inverse of the standard Normal distribution function Φ. With

the information of marginal and assessed pairwise correlations, the normal copula-based dependent

decision tree for variables (Y1, . . . , Yn) is created as follows.

We first construct a discrete approximation for the unconditional Uniform variable u1, and then

recursively compute the dependent Uniform variables uk(k = 2, . . . , n), conditioning on each point

realizations of the previous discrete approximations for (u1, . . . , uk−1). Thus, un can be written as

un = Φ(An1Φ
−1(α1) + . . . + An(n−1)Φ

−1(αn−1) + AnnΦ−1(αn)) (15)

where Anj is the (n, j ) element of the lower triangular matrix A obtained during Cholesky factor-

ization of the covariance matrix Σ as Σ = AAT and αi is the pre-determined (optimally chosen)

percentiles of the conditional distribution ui|u1,. . . ,ui−1.

After the calculation of ui, we combine the marginal information and transform them to obtain

the discrete approximations to the original uncertainties. The discrete approximations of Yi are

obtained by applying the inverse of the target marginal distribution function for each realization

of ui, i.e., Yi = Φ−1
i (ui). Similarly, we create the contingent tree for each successive node until we

generate the complete multivariate standard decision tree for (Y1, . . . , Yn).

4.1.3 Illustrative Example

We now illustrate this approach in the biofuel context. Our goal is to model the dependence

structure of the two parameter uncertainties θi,1, θi,2 for crop i. We use a set of parameters from

Bansal et al. (2017) for this illustration. They calibrated an expert for new varieties of a commercial

crop. For one of the varieties that mean of the yield distribution had the average value of 110 units

per acre and standard deviation of 4.12 units. The standard deviation of the yield distribution was

uncertain with an average of 25 units with a standard deviation of 3.2 units. Furthermore while the

yield distribution itself was Normal, the marginal distributions for the parameters had a Gamma

distributions with a correlation of -0.15. To create the probability tree for the standardized Uniform

variables, we first generate the discretization for uθi,1
. It is a three point discrete approximation



Table 1: Decomposed Lower Triangular Cholesky Matrix

Seed θ1 θ2

θ1 1 0
θ2 -0.2334 0.9724

for the standard Normal distribution with probabilities 0.185, 0.630, and 0.185 assigned to the

percentiles 0.05, 0.5 and 0.95. The three discretized possible outcomes of the distribution of θi,1 are

therefore 103.31, 109.95, and 116.87, the inverse at the 5th, 50th, and 95th percentile of the Gamma

distribution describing θi,1, respectively.

Due to the dependence between θi,1, and θi,2, the discrete approximations for θi,2 are contingent

on the outcomes of θi,1. We first apply the Cholesky factorization to decompose the correlation

matrix into a lower triangular Cholesky matrix shown in Table 1 to assist the calculation of the

dependent uniform variables. The dependent uniform u2 given the outcomes of uθ1,1 . Using formula

(15) for the bivariate case, we can calculate u2 as follows:

u2 = Φ(−0.2334Φ−1(α1) + 0.9724Φ−1(α2)) (16)

For instance, when the outcome of uθi,1
is 0.5 (i.e., the 50th percentile), the conditional distribu-

tion for uθi,2
|uθi,1

= 0.5 is calculated for the 5th, 50th, and 95th percentiles using (16), yielding the

three contingent outcomes of uθi,2
to be 0.0548, 0.5, and 0.9451, respectively. Therefore, the three

discrete outcomes of θi,2 given θi,1 = 109.95 are therefore 20.10, 24.86 and 30.32, the inverse of the

conditional distribution for θi,2 at the 5th, 50th, and 95th, respectively. There are nine (32 = 9)

possible states taking into account the dependent pair of risks (θi,1, θi,2).

4.2 Step 2: Reformulation UPP using Tree and Optimizing over the Tree

Building on the parameter uncertainties described by the dependent state of nature tree, we

model the firm decisions by characterizing cash flows for each crop contingent on each possible

parameter realization, while considering various constraints. Given the investment opportunities

and risk exposures, each crop’s decision making process is modeled by a tree. We then consolidate

the multiple crop-level decisions to obtain expected profit cash flows from the crop portfolio. With

the copulas-based dependent tree depicting the yield distributions and therefore profit for each



seed, we can optimize the resources allocation across the crop portfolio:

Proposition 4 Using the discretized tree, the UPP formulation can be approximated as

APP: max
Q≥0

Πu(Q) = −
n∑

i=1

ciqi +
∑

k1

∑

k2

(

rk1rk2

∫

xn

. . .

∫

x1

Π(Q,x)f(x;θ1k1 , θ2k1k2)dx1dx2 . . . dxn

)

(17)

s.t. g(Q) ≤ L (18)

where rk1rk2 represent the probability weights for the discretization. Finally, we establish that a

unique solution will be obtained using this formulation.

Proposition 5 If UPP is concave, APP in (17)-(18) will have a unique solution.

This result formally finishes the technical development. We next discuss a numerical illustration

for typical industry parameters.

5 Benefits from Incorporating Judgmental Errors into Portfolio

Decision Making: Illustrative Numerical Study

We now present an illustrative example to identify the benefit from explicitly incorporating

parameter uncertainty while making supply chain decisions as compared to when this uncertainty

is ignored. We will focus on two problems. The first problem in where a farmer decides how much

area to allocate from his land to a biofuel crop. In the second problem we focus on the ranking

and selection problem faced by a firm that has a number of crop-variety candidates for a future

development and it selects the top x% crops based on say the 25th quantile of the yield distribution.

5.1 Farmer’s land allocation problem

In this problem the farmer has an area of Q acres that he will split between a conventional

crop and a biofuel crop, in amounts q1 and q2. It follows that q1 + q2 ≤ Q. The farmer also

has a firm order of units D1 and D2 from the conventional crop and biofuel crop respectively.

The tilling cost per acre is c1 and c2 respectively, and the price per unit of output is p1 and p2

respectively. The uncertain yield from the two crops are denoted by random variables Y1 and Y2



respectively. Consistent with the prevalent situation in the agribusiness industry, we consider that

credible parameters of the distribution of yield uncertainty for Y1 are available from prior data,

but the parameters for the distribution of Y2 are obtained from expert judgment and therefore are

subject to an uncertainty. We assume both yields to be normally distributed consistent with prior

agribusiness literature, and used the same parametric uncertainty as discussed earlier from Bansal

et al. (2017).

We first specify the known parameter problem in which we assume that the parameters for Y2

are equal to the mean estimates. The problem is stated as:

KPP:max
Q≥0

Πk(Q) = −
n∑

i=1

ciqi + p1EY1 [min(q1Y1, D1)] + p2EY2 [min(q2Y2, D2)] (19)

s.t. q1 + q2 ≤ Q (20)

We note that for normally distributed yields, this problem is solved easily by expanding the last

two terms and then using a standard gradient based solution. For example, the second term is

written as:

EY1 [min(q1Y1, D1)] =
∫

y1≤D1/q1

q1y1f(y1)dy1 +
∫

y1>D1/q1

D1f(y1)dy1.

Using the properties of the normal distribution we can rewrite this term as:

EY1 [min(q1Y1, D1)] = q1

(

−σ2
y1

Φ(
D1

q1
) + μy1

φ(
D1

q1
)

)

+ D1

(

1 − Φ(
D1

q1
)

)

.

By substituting this expression for the conventional crop and a similar expression for the biofuel

crop in the KPP formulation, we obtain a tractable expression of the expected profit which can be

optimized using standard optimization routines.

We next specify the unknown parameter problem as follows:

UPP: max
Qu≥0

Πu(Qu) = −
n∑

i=1

ciq
u
i +EY1 [min(qu

1Y1, D1)]+
∫

θ21

∫

θ22

EY2 [min(qu
2Y2, D2)]f(θ21, θ22)dθ21dθ22

(21)

s.t. qu
1 + qu

2 ≤ Q (22)



To solve the UPP, we discretized the problem focusing the second yield uncertainty. Specifically,

Figure 1 illustrates the constructed normal-copulas dependent tree for Seed 1. In the constructed

tree, the first uncertainty is a gamma distribution for the yield’s mean and the second uncertainty

is another gamma distribution for the yield’s standard deviation. The uncertainties evolve in the

tree structure as a sequence of dependent uncertainties. The conditional relationship between the

two uncertainties θ21 and θ22 is easy to see in the tree. For example, if the outcome for θ11 is high,

then the conditional gamma probability distribution for θ22 tends to have lower values, reflecting

the negative correlation between these two variables. We optimized the problem (21)-(22) using

the tree shown in Figure 1 for a large number of combinations for costs ci, prices pi, and yield

distribution of the commercial crop. .

To determine the benefit from using the KPP formulation over the UPP formulation, we deter-

mined the percentage optimality gap for each scenario as follows:

OptGap =
Πu(Qu∗) − Πu(Q∗)

Πu(Qu∗)
%100

The numerator in this expression is equal to the difference between the expected profit at inventory

levels provided by the UPP formulation Πu(Qu∗) and the KPP formulation Πu(Q∗), when the true

parameters are not known. For a wide variety of parameters for biofuel crops and conventional

crops, we found this difference to vary between 2-5%.

5.2 R&D variety selection problem

In this problem a R&D team has a number of candidate varieties j=1,2,...,m of biofuel crops

to pursue. The team’s objective is to identify the top x% of the varieties. The selection criterion

is based on a pessimistic return for the farmer. Specifically, the criterion is equal to the 25th or

similarly low quantile of the crop times the selling price of this crop based on its moisture and other

content. Mathematically, the performance of variety m is equal to

Perfm = pm × 25th Quantile of Yield



The uncertain yield from each variety m is denoted as Ym, with parameters θm which are uncertain

and have probability distributions as well. We next describe how the team would make these

evaluations in KPP and UPP mode.

In the KPP mode, the team would treat the parameters θm as known and would estimate the

performance as:

Perfkm = pm(θm1 + z0.25θm2) (23)

In the UPP mode, the team would treat the parameters θm as unknown and would estimate

the performance as:

Perfum =
∫

θm1

∫

θm2

pm(θm1 + z0.25θm2)f(θm1, θm2)dθm1dθm2 (24)

As before we assume that θm1, θm2 have a marginal gamma distribution with a rank order

correlation of -0.15. We omit the details for brevity here, but note that we can use the Copula

based approach to approximate this performance as:

PerfAm =
∑

k1

∑

k2

pmrk1rk2(θm1k1 + z0.25θm2k2) (25)

We used the parameters from Bansal et al. (2017) for 24 distributions for crops for this analysis.

for each distribution, we determined the value of the 25th quantile, the 15th quantile, and the

5th quantile using KPP and UPP, and then ranked ordered the distributions for selection. To

determine the benefit from using the KPP formulation over the UPP formulation, we determined

the percentage of crops that were incorrectly selected by KPP in a portfolio of top x% of the

varieties. We found that at x∼ 10%, there is no difference between the two portfolios. However as

the fraction x increased as would be the case when the team would choose a higher fraction of crops

to pursue, the error rate increases. At x ∼50%, the error was highest at 24% and it progressively

reduced from that point on. Overall, this analysis suggests that the benefit from incorporating the

judgmental errors in the portfolio selection decision is unimodal, and that it is substantial when

the fraction of selected candidates it neither too high nor too small.



6 Summary

In this paper we develop an Copula based approach to explicitly model the uncertainty as-

sociated with subjective probability distributions provided by domain experts for new business

uncertainties in problems involving decision making under uncertainty. Our domain focus is in the

context of biofuels. This industry is in nascent stage. There is a growing emphasis on developing

new varieties of crops that can be used to provide biomass to convert to biofuel. Unfortunately

prior data are not sufficient to develop statistical models to assist in selecting newer varieties. This

industry relies on expert judgements to construct distributions of yields from various varieties to

identify varieties to pursue further and to recommend to farmers to grow in their fields. We show

a farmer who makes a decision to invest in a portfolio of such crops can suffer a loss of profit

by 2-5% by not incorporating the uncertainty in subjective probability distributions for uncertain

yields. The implications for more severe for R&D activities for which ignoring the uncertainty in

yield distribution estimates can lead to an incorrect selection of varieties for develop by as much

as 24%.
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This paper is based on managing agribusiness research and development (R&D) activities in a multi-year,

multi-institution industrial research program conducted by the Federal Aviation Authority (FAA) with the

objective of developing new varieties of perennial energy-grasses and technologies that can provide biomass

based jet fuel. Such research programs tend to be organized in several teams with experts from different

domains who collectively pursue development of new grass varieties and technologies. Typically experts in

each team provide individual point forecasts for the energy-density of candidate varieties. The individual

forecasts tend to differ, and there is often a need to aggregate these point judgments into measures of the

potential and the risk for the energy-density of each grass variety. There was also an awareness that (i)

collectively team members brought both complementary or substitutive perspectives to the teams, and (ii)

some experts were better at estimation than others. The literature does not provide a systematic approach

to aggregate multiple point forecasts into actionable signals while explicitly accounting for these expertise

related factors. In this paper we develop a new characterization of multiple point forecasts provided by

experts, and use it in an optimization framework to deduce actionable signals including the mean, standard

deviation, or a combination of the two for probability distributions. This framework consists of three steps:

(i) calibrate experts’ point forecasts to determine which quantile they provide on average, when asked for

forecasts, (ii) quantify the precision in the experts’ forecasts around their average quantile, and (iii) use this

calibration information in an optimization framework to deduce the signals of interest. We also show that

precision and accuracy in expert judgments are complementary in terms of their informativeness.

Key words : Agribusiness R&D, Risk-return tradeoff, Probability distribution.
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1. Introduction and research focus

In research and development (R&D) program management there is a fundamental trade-off between

the risk and return associated with various candidate projects. The risk is typically measured as

the variability in the potential of a project and the return is measured as the expected (average)

potential of the project. The risk-return trade-off is operationalized in several ways in R&D program

management: Resource allocation decisions are often made based on average potential less a fraction

of the uncertainty in the potential of candidate projects in the spirit of the traditional Markowitz

model (Chopra et al. 2011); portfolio selection decisions in stage gate research pipelines are made

based on the probability of exceeding a performance threshold (Kettunen and Salo 2017); efforts to

collect more information for candidate projects in a portfolio are driven by perceived uncertainty

in the potential of the projects (Jaafari 2001). Project selection decisions are central to R&D

management, and a quantification of the uncertainties associated with various candidate projects

is necessary to make these decisions. Yet in R&D programs it is typical to explore new products

or processes for which historical data are not available to quantify the uncertainties. Hess (1993)

discusses R&D efforts at multiple firms in this environment, observing that “Selecting research and

development projects is always difficult because data for assessment are seldom available”.

In the absence of historical data, firms need to rely on experienced managers or domain-experts to

evaluate the potential of candidate projects. Domain-experts often provide only point forecasts or

judgments for the most likely potential of a project. Yet in applications such as R&D management,

the need to “produce predictive distributions is compelling” in order to make risk-return trade-offs

(Geweke and Amisano 2011). When provided with point forecasts by multiple experts, how can a

manager deduce the risk and average return for a candidate project and determine the action she

should take for R&D management? – in this paper we develop an analytical framework to answer

this question. We next describe a academic-industry research program that motivated this paper

and illustrative field-data collected in this multi-year effort to further explain the forecasting and

decision making problem.

1.1. Agricultural R&D to plan for regional sustainability and role of domain expertise

Since 2016, the FAA has sponsored an industry-building research program in the northeastern U.S.

The program seeks to boost regional energy generation in the Northeastern U.S. by developing

high-energy-density perennial grasses – grasses that release high amounts of heat when burned –

that can be used translated into jet fuel. This R&D program is driven by several socio-economic

and sustainability needs. A number of regional pockets in the U.S. have marginal lands that cannot
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support cultivation of traditional food or cash crops. In many cases the limited fertility of these

lands is due to geological factors such as rocky terrain. In other cases these lands are the sites of

mineral/coal mines whose top soil was removed for mining activities but the mines are defunct

now. Perennial grasses offer a source of income to the owners of these otherwise barren-lands.

Some specific perennial grasses thrive well in marginal lands and, once dried, provide fuel that

landowners can sell to energy-plants. At a macro-level these grasses contribute towards making the

US self-reliant for energy, a goal that the federal government actively pursues. Perennial grasses

also reduce the use of fossil fuels for energy-generation and contribute towards a reduction in CO 2

emissions. The program has nearly one dozen participating academic institutions industry partners.

The R&D activities at the program of interest to us focus on developing better varieties of

these grasses. Research-scientists teams are tasked with developing varieties that provide higher

energy-yields in specific climate and geographical conditions in the Northeast US. Each team is

comprised of experts from commercial firms, industry research firms, and academic research and

outreach divisions. To develop new varieties, each team starts with a broad range of parent-strains

(varieties with unique genetic structure), develops new hybrid strains by cross-pollination, and then

progressively explores hybrids of hybrids. The selection of specific hybrids over others during this

progressive selection is based on objective criteria including the average energy-yield, the variance

in the yield, and specific quantiles say 75th or 25th quantiles of yields.

Unfortunately credible predictive models are not available to provide estimates of performance

of new hybrids on these criteria, for several reasons. These grasses are not an established part

of animal or food chain. Few scientific efforts have been made in the past to collect quantitative

information about parent strains or to develop hybrids, and only scant data are available for the

energy-yields of various strains. Efforts made to use regressions on genetic markers to predict yields

have been unsuccessful due to data sparsity issues. As a result there is a need to rely on expertise

of domain experts to estimate yield distributions. To further validate the need to rely on expert-

judgments for developing new varieties of perennial grasses, we conducted an anonymous survey

of nearly one hundred researchers associated with biofuel supply chains. We asked the participants

to identify the major risks associated with developing biofuels based supply chains. For each risk

identified by a participant, we further asked (i) whether the participant believed that the risk was

internal or external to biofuels, and (ii) whether data were available to quantify the risk or if one

would need to rely on expert-opinion or both. We also asked for other information e.g., research

focus of the expert (variety development, combustion etc), but we will restrict the discussion here

to the context of variety development. The results of this survey are shown in Figures 1 and 2.

Figure 1 shows that nearly one-third of participants believed that developing better varieties was
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a major source of risk to the research program (the third bar from the bottom). Furthermore, as

shown in Figure 2 a majority of these researchers believed that additional data alone would not

be sufficient in the near future to support this R&D activity and that expert-judgments would be

necessary to support this activity.

Figure 1 Survey results for the identification major risks associated with biofuel supply chains

Figure 2 Survey results for quantification of major risks associated with biofuel supply chains

In this domain-expertise driven estimation the team members typically provide point forecasts

(their judgments for most likely values) for the yields of new hybrids. A key challenge then is then
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Hybrid Prediction by Expert 1 Prediction by Expert 2 Prediction by Expert 3 Mean from Data StdDev from Data
XXXX01 9.7 15 13.5 11 2.77
XXXX02 20.5 34.8 25.2 24 7.34
XXXX03 23.8 34.2 26.1 25 6.3
XXXX04 26.8 31 24.8 24 4.75
XXXX05 18.6 22.4 17.6 17 3.67
XXXX06 26.9 34.2 26.9 26 5.61
XXXX07 10 16.8 12 11 3.96
XXXX08 7.3 12.8 8.2 8 1.44
XXXX09 13.9 22.3 16.7 16 4.32
XXXX10 11 23.5 13.7 13 4.21
XXXX11 19 32.7 22.5 21 6.42
XXXX12 12.1 22.8 14.7 14 4.03
XXXX13 15.8 29.8 23.7 18 4.53
XXXX14 9.3 13.1 10.3 10 2.16

Table 1 Sample data from three experts in a team.

to aggregate these point forecasts into a metric that could be used to compare various alternatives.

The research teams are typically composed of personnel in different fields (e.g., field trial experts,

bio-statisticians etc.) who bring different technical perspectives; and personnel with different exper-

tise levels (e.g., experienced industry-scientist, relatively new post-doctoral researcher etc). It was

desirable to account explicitly for these individual differences when preparing aggregate metrics.

For example, columns 2, 3, and 4 in Table 1 show the judgments provided by three experts in a

team for two dozen hybrids. Columns 4 and 5 show the summary statistics for actual data collected

at a later date from multiple crops of these hybrid strains. We focus on using this information to

inform aggregation of the expert-provided point judgments for portfolio selection and investment

decisions for future hybrids.

1.2. Our Research Focus and Contributions to Theory and Practice

In this paper we first develop an algorithmic approach to deduce actionable signals in the form

of the mean or standard deviation or a combination of the two obtained from point judgments

provided by multiple experts when experts’ forecasts can be calibrated using data such as the one

shown in Table 1. A key feature of this approach is that it characterizes the judgments of experts

on two-dimensions, (i) average location on the probability distribution curve, and (ii) precision

centered around this location. This characterization also enables us to develop an objective measure

of information contained in judgments that is consistent with the existing theory of order statistics.

We then use this characterization into an optimization model to aggregate point judgments for

future uncertainties and obtain an actionable signal. This approach naturally leads to a protocol to

select a subset of experts from many, when this selection must be made due to cost or other reasons.

We also establish analytically that the information content in an expert’s judgments depends both
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on the bias and the noise in his judgments, and further, these two dimensions are complementary.

Specifically, an expert whose judgments on average are in the vicinity of the mode of a distribution

must also provide these judgments with a higher consistency in order to be as informative as an

expert who on average provides judgments in a tail.

The rest of the article is organized as follows. In Section 1.3, we discuss the relevant literature

and our contributions. In Sections 2 – 4 we discuss the model, solution, structural properties, and

a special case. In Section 5, we discuss model extensions; in Section 6 we conclude with a summary

and directions for future research.

1.3. Literature Review and Overview of Our Approach

Three streams of research are relevant to our work: (i) individual expert/managerial forecasting,

(ii) connecting point forecasts from multiple experts to probability distributions when direct his-

torical information is not available for the uncertainties of interest, and (iii) operations research

developments for agribusiness. The first stream of work has focused on behavioral issues in fore-

casting when a single expert provides point forecasts or judgments. Prior research in this domain

has documented a number of biases and inconsistencies present in expert judgments (see e.g., Ster-

man 1989, Bazerman and Moore 2008). This literature shows that the biases and inconsistencies

in expert-judgments tend to be individual specific, i.e., all experts are not alike - some experts

are more biased than others and some experts are more consistent in their judgment than others

(see e.g., Agnew 2006). Our focus in this paper is on quantifying this bias and consistency in

expert-judgments in group settings and then aggregating them to deduce optimal actions.

The idea of using multiple point judgments to deduce a distribution has been explored in two

different ways. Barron and Stuerke (1998) adopt an approach that is agnostic of individual dif-

ferences. Specifically, they showed empirically that when multiple financial analysts provide point

forecasts for return of a stock, (i) the average of these forecasts is a good estimate of the mean

of the probability distribution of the stock-return, and (ii) the variability measured as variance or

standard deviation in the point forecasts is directly proportional to the true variance or standard

deviation of the probability distribution. The proportionality constant for the variance is estimated

in a calibration process. In this calibration, analysts provide point forecasts for multiple known

probability distributions (similar to the data in Table 1), and the variance in the point-forecasts

for each distribution is calculated (point-variances). Subsequently the true variances of the distri-

butions are regressed on the calculated point-variances. For the regression specification with no

intercept, the regression coefficient provides the proportionality constant. This model has been

adopted in several domains, including operations management (Gaur et al. 2007), and finance (see
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e.g., Barron et al. 1998, Johnson 2004), among others. In contrast to this body of work we develop

a bottom-up analytical approach in which we focus on characterizing individual judgments. This

characterization then suggests how to optimally aggregate the judgments. This focus enable us to

relax some strong assumptions made in this literature. Specifically, this literature assumes that the

experts provide judgments that are independent and identically distributed (Barron and Stuerke

1998). However, empirical data show that experts’ judgments can be correlated (Budescu et al.

1997) and that the quality of judgments by some experts is markedly superior to others’ (see e.g.,

Budescu and Chen 2014, Davis-Stober et al. 2015). These developments also require the presence

of a large number of experts for statistical validity. However in many business situations, only three

or four experts are available to provide forecasts.

Our analytical development addresses these issues. Specifically, we first use the calibration data

available for each expert to identify the quantile each individual expert provides on average when

asked for the most likely value, and the variability in his judgment around this quantile. We then

determine the variance-covariance matrix for the variabilities in judgments for all experts. The

diagonal elements of this matrix (variance) is used as a proxy for the reliability of each expert’s

forecasts. The off-diagonal elements quantify the correlations between the point forecasts provided

by various experts. We then use this information in an optimization framework to estimate an

actionable signal as a function of the individual judgments provided by the experts. This approach

is based on the theory of judgmental errors discussed in prior decision analysis literature (e.g.,

Ravinder et al. 1988) and is grounded in statistical theory, specifically on order statistics (e.g.,

Lloyd 1952). Using the estimate of the average quantile provided by an expert and its variability we

obtain an objective quantification of expertise which then enables us compare experts and quantify

their individual contribution to the group’s aggregated forecast.

In the second approach individual differences in experts’ quality are accounted for. Bates and

Granger (1969) consider the problem where a decision maker wants to combine two unbiased judg-

ments when the standard deviations of the errors in both judgments are available. Winkler (1981)

extend this model to more than two experts. Both articles (and the ones that follow this paradigm)

assume that the error in the judgments has been quantified by determining the differences between

an expert’s historical forecasts and actual realizations for the same underlying uncertainty. This

focus leads to a limitation where an expert’s errors for say multiple products with different demand

magnitudes (e.g., a product with demand in 100s while the other one in 1000s) cannot be used for

quantifying judgmental errors. In contrast to this framework, our model considers that complete

historical distributions are available to calibrate an expert’s judgments, i.e., we can compare an

expert’s point judgments against complete distributions. We leverage this information to trans-

form the judgmental errors present in point judgments into values on a standardized location-scale
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distribution (e.g., on the standardized z-scale for the normal distribution). This standardization

enables us to do two things. First it enables us to quantify the bias in an expert’s judgments as the

average quantile she provides and the noise as the variability in her judgments around this quantile.

Second, we can now use the judgmental errors for multiple products using a milder assumption that

an expert uses a stable mental process to provide probability judgments for multiple quantities.

We also use this framework to show analytical results such as the one in Proposition 2 where we

establish that expert accuracy and precision are complementary in nature.

A small but growing body of literature has explored the use of calibration information to improve

decision making. For example, Cooke (1991), Bansal et al. (2017) and Kettunen and Salo (2017)

discuss approaches to use historical information for calibration and then use this information to

improve forecasts for future quantities. Our paper is closest to Kettunen and Salo (2017) with

some important differences in methodology and context which make their results not applicable

to our problem. Specifically, Kettunen and Salo (2017) study project selection decisions based on

quantile-estimates of cash flows obtained from a Monte-Carlo simulation model, and show that

pure random variations can lead to systemic biases in this selection process. They suggest using

calibration data to adjust the quantile values obtained in simulation models to avoid this bias. In

contrast, in our context experts provide point forecasts and these forecasts need to be aggregated to

deduce a specific quantile or alternatively the mean and standard deviation of the uncertainty for

project selection decisions. Our characterization of individual judgments and optimization model

used for optimal aggregation is also different in our problem context.

Finally, a large body of literature exists on using operations research approaches to manage

agribusinesses. See Weintraub and Romero (2006), Bjørndal et al. (2012) for latest reviews and

syntheses of these developments. The discussion in Weintraub and Romero (2006) suggests that

risk and uncertainty are important aspects of agribusinesses and a large body of work focuses on

production planning models under risk, but the issue of estimating risks especially for agribusiness

R&D has not received only scarce attention. Our work addresses this gap.

2. Model Preliminaries

In Section 2.1, we discuss the problem context, information available, notation and assumptions.

In Section 2.2, we discuss the functional form of actionable signals considered in our development.

2.1. Problem Context and Notation

We consider j = 1, 2, ..., m experts who provide point forecasts ŷ = [ŷ1, . . . , ŷm]t for an uncertain

quantity or random variable Y . The business objective is to use the estimates ŷ and determine
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the value of the signal or function g(μ,σ), where μ,σ are the mean and standard deviation of

distribution of Y respectively. The signal could be of any one of multiple forms based on context

driven decision criteria. A common practice in the agribusiness domain to rank order varieties of

a crop based on specific quantiles of yield distributions and select the top varieties in the list (see,

e.g., Batur and Choobineh (2010) and Kettunen and Salo (2017) for other applications of this

criterion in R&D management). Second, consistent with financial portfolio theory, the selection

decision could also be made based on a linear combination of the mean yield and the (negative of)

yield uncertainty. Two special cases of this paradigm are the ones where decisions are made based

on only mean and only standard deviation. We capture these multiple criteria using the following

form of the signal:

g(μ,σ) = α1μ + α2σ (1)

Suppose a team has decided that it will rank order varieties based on the yield values corre-

sponding to probability p or select varieties for which the pth quantile of energy-density yield would

exceed a threshold. Then, for the widely used normal distribution for energy-yield, the decision

criterion is q = μ + zσ where z = F−1(p; 0,1) and F (∙; 0,1) is the standardized CDF the energy-

density yield, i.e., α1 = 1, α2 = z. The second criterion discussed above for weighing mean and

standard deviation is represented using α1μ − α2σ where α1 and α2 are the importance weights

assigned to the mean and standard deviation of the uncertainty. The two special cases for making

decision based on mean only and standard deviation only are obtained using (α1 6= 0, α2 = 0) and

(α1 = 0, α2 6= 0) respectively.

In the immediate development, we assume that the underlying uncertainty has a location-scale

distribution. This focus is consistent with an established body of literature including Barron and

Stuerke (1998), among others. This focus is (i) not overly restrictive from practice perspective (ii)

provides analytical tractability and insights to the problem we study, and (iii) can be extended to

other distributions. Location-scale distributions include some frequently used distributions in op-

erations literature and practice such as the Normal distribution, Logistic distribution, and Gumbel

distribution, and as such is consistent with prior literature on R&D management such as Kettunen

and Salo (2017). For these distributions, our immediate technical development provides closed form

solutions for aggregating point judgments. In Section 5 we extend the technical development to dis-

tributions that are obtained by a monotone transformation of location-scale distributions, e.g., the

Johnson family of distributions that are obtained from transformations of the normal distribution.

The mean and standard deviations of location-scale distributions are linear functions of the

location and scale parameters μ1 and μ2 respectively. For notational ease in the remainder of the



Bansal and Gutierrez: Point Forecast to Actionable Signals
Article submitted to Operations Research; manuscript no. 9

paper we will focus on estimating the form g(μ1, μ2) = α1μ1 +α2μ2. Consistent with prior literature

(e.g., Cooke (1991)), we first consider on the case where data are available to calibrate the point

judgments provided by individual experts, similar to Table 1. Specifically we address the case where

a team of experts was asked to provide individual point forecasts X with elements x̂ij for each

expert j and calibration distribution for uncertainty i, for i = 1, 2, ..., n. Calibration distributions

are empirical distributions for different uncertainties from similar contexts that are available from

prior data collection or analysis. The probability distribution function for calibration distribution

i is denoted as Fi(∙;μi) where μi = [μi1, μi2]T are respectively the location and scale parameters

of the distribution. The vector of these distributions is denoted as F. The experts’ point forecasts

will be compared with the historical frequency of observed values; the information generated in

this calibration process, (X,F) will be used to process the experts’ forecasts ŷ for the new random

variable of interest, Y , for which historical data do not exist. In Section 5 we extend the results to

the case when these calibration distributions are not available.

2.2. Actionable Signals as Functions of Judgments and Outline of Development

We seek to obtain the estimate g(μ̂1, μ̂2) of g(μ1, μ2) as an aggregation-function of the m forecasts

ŷ and calibration data (X,F),

g(μ̂1, μ̂2) = h(ŷ;X,F) (2)

In the development that follows we first transform the calibration data; define an optimality

criterion; identify the optimal functional form h(ŷ;X,F) of the signal ; and then estimate it. In

order to do this, we characterize the point judgments provided by each expert using two quantities

– the average of the quantile corresponding to the judgments he provides, and a measurement

of the consistency (or alternatively the spread) of his judgments. The details of this step are in

Section 3. In Section 4, we use this characterization in a least squares minimization framework.

We first show in Proposition 3 that for these transformed judgments a linear functional form

g(μ̂1, μ̂2) = wtŷ provides unbiased estimates of g(μ1, μ2) with lowest variance, where the vector w≡

[w1, w2, ..., wm]t represents importance weights for the judgments, and then provide the weights in

Proposition 4. This development has several practical merits. First, it is consistent with the classical

signal processing theory in which multiple signals are aggregated using a weighted average to

constitute an actionable signal (see e.g., Bates and Granger 1969). Furthermore the weights directly

depend on the bias and consistency of the experts’ forecasts for the calibration distributions, as

deduced from the calibration data (X,F), directly linking experts’ performance on calibration

distributions with the weights assigned to their future judgments.
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Figure 3 Transformed judgments by three experts

3. Characterizing Point Forecasts from Multiple Experts and Structural
Properties

In Section 3.1, we use the calibration data to characterize experts’ forecasts as an average quantile

plus noise. In Section 3.2, we use this characterization to derive a metric of the predictive value

for each expert’s estimates.
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3.1. Procedure for Characterizing Forecasts

Figure 3 provides intuition for our characterization process. The figure uses the data from Table

1 for the forecasts provided by three experts for the calibration distributions. In the first panel,

we transformed the n judgments provided by Expert 1, x̂i1 for i = 1, 2, ..., n, into standardized z

values as ẑi1 = F−1
i

(
Fi(x̂i1;μi); 0,1

)
, and then created a histogram of these standardized values.

The x-axis is defined in terms of the standardized z-value, and extends on R. The y-axis shows the

frequency count. The second and third panels show these histograms for the judgments provided

by experts 2 and 3 respectively. This transformation of responses into the z-domain has several

advantages. The z-domain is a scale-free domain and allows a comparison of the experts’ point

forecasts across all calibration distributions. For example, the three panels show that Expert 1 is

more likely to provide judgments that are close to the location parameter of a distribution (i.e.,

near z-value of 0), whereas Experts 2 and 3 tend to provide judgments in the right tail (i.e. z > 0)

on average. We can further conclude that the judgments of Expert 1 tends to be more consistent

as they are dispersed in a small range, and the judgments of Experts 2 and 3 are relatively less

consistent as they have a larger dispersion.

Mathematically, the point forecasts provided by each expert j on all calibration distributions

i = 1, 2, ..., n are translated into the corresponding standardized z-values, as

ẑij = F−1
i

(
Fi(x̂ij ;μi); 0,1

)
(3)

We then take an average of all these standardized z-values for each expert j to identify the quantile

she provides, on average:

ˆ̄zj =

∑
i ẑij

n
(4)

This calculation provides a direct characterization of each expert’s average behavior in the prob-

ability domain. Specifically, we can compute the probability ˆ̄pj = F (ˆ̄zj ; 0,1) that on the average

each expert provides. For example, for the specific data in Figure 3, one can perform the calcula-

tions above and deduce that Expert 1 provides the 39th quantile on average (with average z-score

of -0.29), Expert 2 provides the 98th quantile on average (with average z-score of 2.00), and Expert

3 provides the 80th quantile on average (with average z-score of 0.83).

To characterize the consistency with which each expert provides her average quantile, we assume

an additive error model z(x̂j) = z(pj) + ε as suggested in Ravinder et al. (1988) and Wallsten and

Budescu (1983) for modeling judgmental errors, and we estimate the variance-covariance matrix

Ω for the judgments for all experts around their average quantile ˆ̄zj :

Ω =






ω11 . . . ω1m

...
...

...
ωm1 . . . ωmm




 (5)
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where the individual elements are

ωjj =

∑n

i=1(ẑij − ˆ̄zj)2

n− 1
; j = 1, 2, ..., m (6)

ωkj =

∑n

i=1(ẑij − ˆ̄zj)(ẑik − ˆ̄zk)
n− 1

; k, j = 1 ,2, ...,m; k 6= j (7)

Each diagonal element ωjj ; j = 1, 2, ..., m in the matrix denotes the variance in the judgments

for expert j around the quantile ˆ̄zj . The non-diagonal elements ωkj ;k 6= j denote the covariances

between the noise in the estimates of experts k and j around their average quantiles, ˆ̄zk and ˆ̄zj

respectively. When the matrix Ω is a diagonal matrix, it implies that the experts’ variations around

their central quantile are mutually independent. For more general matrices, the matrix captures

correlations present between pairwise judgments. For the specific data in Figure 3 for three experts,

this matrix is obtained as Ω =




0.09 −0.07 0.04
−0.07 0.55 0.29
−0.04 0.29 1.11



. Based on this matrix we conclude that the

judgments of Experts 2 and 3 are mildly correlated, while the judgments of Expert 1 show only a

small correlation with the judgments of Experts 2 and 3.

The above calibration procedure provides information about the average forecast behavior of

every expert and the variability in his judgments. We next provide a statistical grounding to this

characterization to measure the quality of the judgments of each expert.

3.2. Quantification of Expertise into Equivalent Sample Size and Complementarity of Bias

and Precision in Point Judgments

We start by noting a useful result for the quantiles of sampling distributions. The sample vari-

ance of quantile x corresponding to probability p for a sample size n is equal to V ar(x) = p(1−

p)/
(
n[f(F−1(p))]2

)
where f is the pdf with parameters μ1, μ2 and F is the corresponding cdf (Stu-

art and Ord 1994). This result states that the sample variance is higher for tail quantiles (i.e., for

small or large values of p) and is lower for quantiles in the center of the distribution. Intuitively

tail realizations from a parent population are less frequent in a sample and therefore its estimation

has a higher variability. In contrast, realizations from the central part of the distribution, say the

mode, tend to be more common in a random sample and hence its estimation has lower variability.

We next adopt this result for our context and specialize it for location-scale distributions. From

the definition of location-scale distributions the quantile x = μ1 +zμ2 where z is the quantile corre-

sponding to probability p for the standardized pdf fs(∙) and standardized cdf Fs(∙) = F (∙; 0,1) with

μ1 = 0, μ2 = 1. It follows after some algebra that V ar(z) = p(1− p)/
(
nσ2[f(F−1(p))]2

)
. Now using

the property f = fs/μ2, we obtain that the variance of the z value corresponding to probability p

obtained from a sample of size n is equal to V ar(z) = p(1− p)/
(
n[fs(z)]2

)
.



Bansal and Gutierrez: Point Forecast to Actionable Signals
Article submitted to Operations Research; manuscript no. 13

In our development in the previous section, we calibrated each Expert j and quantified the

variance in his judgments for the z-value corresponding to probability ˆ̄pj , as ωjj . By equating

this variance with the corresponding quantile sampling variance, we can quantify the expert’s

consistency to be equivalent with a sample of Nj iid observations:

Proposition 1 (Equivalence of Individual Judgments with Random Sample Size) The

precision of Expert j in providing the judgments for the ˆ̄pjth quantile is equal to the precision of

the estimate obtained of the same quantile obtained from an iid sample of size Nj, where

Nj =
ˆ̄pj(1− ˆ̄pj)

ωjj

(
fs(ˆ̄zj)

)2 (8)

A salient feature of the equivalent sample size is that it accounts for both accuracy and the

precision of the expert judgments. The accuracy is specified in terms of the average quantile ˆ̄pj of

the expert’s judgments and the precision information is captured by the variability ωjj with which

the experts provides his judgments. This result has several implications. First, we can develop an

objective ranking of multiple experts in terms of their informativeness. Specifically, if the equivalent

sample sizes of two experts are N1 and N2 with N1 > N2, then it follows that accounting for the

average quantile these experts provide, Expert 1’s judgments provide more information.

Second, we can use this result to draw isoquant curves for equivalent sample size, i.e., we can

deduce a continuum of combinations of ωjj and ˆ̄pj such that at each of these combinations the ex-

pert’s judgments provide a constant level of information. Specifically, using the relationship between

probability and z-scores ˆ̄zj = F−1
s (ˆ̄pj) we can rewrite the expression Nj = ˆ̄pj(1− ˆ̄pj)/

(
ωjj

(
fs(ˆ̄zj)

)2 )

as ωjj = ˆ̄pj(1− ˆ̄pj)/
(
Nj

(
fs(F−1

s (ˆ̄pj))
)2 )

. Observe that the R.H.S. of this expression is a function of

only ˆ̄pj for a given value of Nj . It follows that for any average quantile ˆ̄pj of the judgments there

exists a variability ωjj such that the information in the judgments as measured in terms of the

equivalent sample size remains the same. Figure 4 shows the isoquant curve for the judgments of

Expert 1. The x-axis shows the average quantile and the y-axis shows the variability in judgments.

Specifically, Expert 1 provides judgments for the 39th quantile with a variability of 0.09 units in

the z-domain, with the equivalent sample size of 18 data points. His equivalent sample size would

have remained the same if he had provided judgments at any other point on the curve, e.g., for

the 85th quantile on average with variability level of 0.13.

Third, this development suggests that the bias in expert judgments and precision in the judg-

ments are complementary characteristics.

Proposition 2 (Complementarity of Bias and Precision in Judgments) Let the function

ωjj = g(ˆ̄pj) denote the variance in expert js forecasts such that the equivalent sample size Nj is

constant. Then, g(ˆ̄pj) has a U-shape with the minimum value at the mode i.e., at z where f ′
s(ˆ̄zj) = 0.
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Figure 4 shows this result pictorially for the judgments of Expert 1 for a normal distribution. The

isoquant curve attains its lowest value at an intermediate point (at cumulative probability value of

0.5) and then increases in both directions from this point. This trend shows that the accuracy in

individual forecasts as measured by the average quantile provided by an expert and the precision in

the judgments are complementary. If an expert provides judgments on average that are close to the

mode of a distribution then he must also provide these judgments with a greater level of consistency

to remain informative at a specific level, as compared to the case when he provides judgments on

average that are in either tail. The curvature of the isoquant curve depends on the underlying

probability distribution of the uncertainty. Specifically, to see this, we first rearrange the equation

Nj =
ˆ̄pj(1− ˆ̄pj)

ωjj

(
fs(ˆ̄zj)

)2 as the function ωjj =
ˆ̄pj(1− ˆ̄pj)

Nj

(
fs(ˆ̄zj)

)2 =
fs(ˆ̄zj)(1− fs(ˆ̄zj))

Nj

(
fs(ˆ̄zj)

)2 . Next we differentiate the

function to obtain its gradient as
∂ωjj

∂ ˆ̄zj

=
f ′

s(ˆ̄zj)− 2f ′
s(ˆ̄zj)fs(ˆ̄zj)

Nj

(
fs(ˆ̄zj)

)2 −
2f ′

s(ˆ̄zj)fs(ˆ̄zj)(1− fs(ˆ̄zj))

Nj

(
fs(ˆ̄zj)

)3 which

on simplification reduces to
∂ωjj

∂ ˆ̄zj

= −
f ′

s(ˆ̄zj)

Nj

(
fs(ˆ̄zj)

)2 . Since fs(ˆ̄zj) > 0 the minimum is achieved at

f ′
s(ˆ̄zj) = 0. This analysis shows that both the curvature of the isoquant curve as well as the point

where the minimum is reached varies by the distribution family. As shown in Figure 2, when

the underlying distribution is symmetric the gradient
∂ωjj

∂ ˆ̄zj

=
f ′

s(ˆ̄zj)

Nj

(
fs(ˆ̄zj)

)2 is symmetric with a

minimum at p = 0.5. This result is especially applicable to the R&D environments where project

outcomes and their estimates are typically normally distributed (Loch and Kavadias 2002, Smith

and Winkler 2006, Kettunen and Salo 2017). In contrast when the distribution is left skewed as

shown in Figure 5 for a skew-normal distribution, the minimum value is reached at p > 0.5. This

happens because the the mode is reached in the right side region of the pdf and the expert needs to

provide his judgments with a greater accuracy in this region. Figure 6 for a right skewed distribution

is also interpreted similarly.

The equivalent sample size Nj plays an important role in selecting a set of experts for the

purposes of aggregating their judgments to deduce the function g(μ̂1, μ̂2), which we focus on next.

4. Aggregation Problem and Results for Group Composition

In Section 4.1 we focus on estimating the function g(μ̂1, μ̂2) for Y for aggregating individual judg-

ments ŷ. In Section 4.2 we analyze the relationships between individual expertise and the expertise

of a group of experts, and in Section 4.3, we discuss optimal team selection.

4.1. Deducing an Actionable Signal Using All Judgments

Consistent with a large body of literature on deducing distribution parameters from discrete in-

formation for judgments (e.g., Keefer and Bodily 1983, Keefer and Verdini 1993, Johnson 1998),
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Figure 4 Isoquant curve for the normal distribution. Note that the u-shape will prevail for all symmetric distri-

butions.

Figure 5 Isoquant curve for a left tailed skew-normal distribution with skewness factor -0.2.

Figure 6 Isoquant curve for a right tailed skew-normal distribution with skewness factor 0.2.

we focus on obtaining an estimate of g(μ1, μ2) with a minimum variance. To this end, we first note

that using the calibration information for expert-judgments generated in Section 3.1 we can write
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the judgments provided by each expert j as ŷj = μ1 + ˆ̄zjμ2 + ε with E[εj ] = 0. Due to this linear

specification of quantiles in terms of distribution parameters, the optimal functional form h(∙) for

the estimation g(μ̂1, μ̂2) = h(ŷ;X,F) is given by a linear function of the vector of judgments ŷ.

Proposition 3 For location scale distributions, the minimal variance unbiased value of the func-

tion g(μ1, μ2) is obtained by a weighted linear function of judgments ŷ as g(μ̂1, μ̂2) = wtŷ where

w = [w1,w2, ...,wm]t is the vector of weights given to each expert’s judgment.

This result shows that a simple weighted average of judgments provides an actionable signal with

desirable properties (unbiasedness and minimum variance). Additionally, a weighted average of

judgments is intuitively appealing to industry managers/experts and it is easy to implement in

practice. The detailed proof is in Appendix. In the proof we exploit properties of the least squares

framework to establish that the estimates μ̂1, μ̂2 of the two parameters are obtained as weighted

average of the observations ŷ, and then exploit the linearity of g(μ1, μ2) in μ1 and μ2 to establish

that g(μ1, μ2) is also estimable as a weighted average of ŷ. We note that our analysis is prima-facia

similar to Lloyd (1952) who show that the moments of a location-scale distributions are expressed as

unique linear combinations of order statistics of these distributions. However there is an important

difference in our context. In the development in Lloyd (1952) the variance-covariance matrix for

the order statistics is a structural property of the distribution family and is estimated using Monte

Carlo simulation or from analytical properties of distributions of order statistics, whereas in our

case we use quantile judgments to estimates the parameters when the variance-covariance matrix

is estimated separately in a calibration exercise of expert-judgments. As a result while the optimal

weights w∗ in Lloyd (1952) are constant in our context they depend on the quality of expert

judgments. Next, we determine these optimal weights.

Specifically, we first setup the problem for the estimation of parameters μ and from these esti-

mates we will deduce the weights for estimating g(μ1, μ2). While the variance minimization problem

is standard in the literature, we next provide the complete specification of the optimization for-

mulation for the sake of completeness as well as to deduce properties of the optimal weights. We

first rewrite the vector of judgments ŷ = [ŷ1, ŷ2, .., ŷm]t as ŷ = Zμ + ε where Z is m× 2 matrix

with columns [1,1, ...,1] and [z̄1, z̄2, ..., z̄m] and μ = [μ1, μ2]
t. The calibration exercise discussed in

Section 3 has provided us with the values of z̄j as well as the variance-covariance matrix of ε, Ω.

We next specify the following optimization problem for minimizing the estimation variance:

min
μ

(ŷ−Zμ)tΩ−1(ŷ−Zμ) (9)
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Proposition 4 (Optimal Weights for Experts’ Judgments) The weights that provide un-

biased minimum variance estimate of g(μ1, μ2) as g(μ̂1, μ̂2) = wtŷ are given by w∗ =

at(ZtΩ−1Z)−1ZtΩ−1 with at = [α1 α2].

Using Proposition 4 we can identify three factors that determine the weights assigned to various

experts. The first factor is the quantile each expert provides on average as well as the quantiles

provided by other experts. This information is captured in matrix Z. The second factor is the vari-

ability in an expert’s judgments for his average quantile as quantified in the ith diagonal element of

the variance-covariance matrix as well as the relative magnitude of the variability in other experts’

judgments. This information is captured in the variance-covariance matrix Ω. The third factor is

the values of α1 and α2 in the function g which determine what quantity is to be estimated using

the point judgments provided by the experts, where at = [1 0] for the estimation of the mean,

at = [0 1] for the estimation of standard deviation, and at = [1 z] for the estimation of quantile

corresponding to the z-value. Finally, the property that the optimal weights provide an unbiased

estimate of g(μ1, μ2) leads to an important structural property of the weights. Specifically, the

unbiased property of the estimate g(μ̂1, μ̂2) = w∗Tŷ implies that E[w∗Tŷ] = at μ. Now substituting

E[ŷj ] = μ1 +zjμ2 in vector notation we obtain Ztw∗ = a, which on further simplification shows that

the optimal weights for individual judgments add up to the weight on the mean, i.e.,
m∑

i=1

w∗
i = α1.

We can further rewrite this equation as
m∑

i=1

w′∗
i = 1 where w′

i =
wi

α1

. This equation implies that

the weights assigned to experts’ judgments can be normalized to adding to 1, and therefore each

expert’s judgment can be thought of contributing to a total weight of 1, a feature that is easy to

explain to practitioners. This framework can also be used to deduce multiple signals. Specifically,

suppose that a decision maker is interested in determining two quantities g1 = α11μ1 + α21μ2 and

g2 = α12μ1 +α22μ2. One can show after some algebra that these two quantities have individual es-

timation variances of [α11, α21](ZtΩ−1Z)−1[α11, α21]
t and [α21, α22](ZtΩ−1Z)−1[α21, α22]

t; and with

covariance [α11, α12](ZtΩ−1Z)−1[α21, α22]
t
. The intuition for estimation of the covariance is that

the underlying judgmental errors are the same, and hence the two quantities estimated based on

the errors are correlated.

4.2. Impact of Team Composition on Performance

We now discuss how the characteristics of individual experts affect the group performance. In order

to do this we consider the case when the expert judgments are aggregated to estimate a specific
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quantile for probability p, i.e., α1 = 1 and α2 corresponds to probability p. One can show after

some calculations that the variance of the quantile estimate g(μ̂1, μ̂2) = μ̂1 + α2μ̂2 is equal to

Var(g(μ̂1, μ̂2)) = [1 0](ZtΩ−1Z)−1[1 0]t + [0 α2](ZtΩ−1Z)−1[0 α2]
t +2[1 0](ZtΩ−1Z)−1[0 α2]

t (10)

where the first two terms are the variances in μ̂1 and μ̂2 respectively, and the third term is twice

the covariance between μ̂1 and μ̂2. The first two terms in the R.H.S. are non-negative. The sign

of the third is undetermined and depends on the value of α2 which can be positive or negative

values as well as on Z and Ω. It follows that the characteristics of individual experts (as captured

by Z and Ω) and the quantiles to be elicited together influence whether a specific team would

provide judgments for a specific quantile with higher or lower precision. Specifically, a team would

either provide more precise judgments for either the left tail quantile or the right tail quantile (for

a positive and negative value of the third term respectively). For a more nuanced understanding,

we focus on the case when Ω is a diagonal matrix, i.e., when the expert judgments are mutually

independent.

Proposition 5 Consider Ω to be a diagonal matrix. When each ˆ̄zj < 0 the aggregate estimate of

a quantile in the right tail with α2 > 0 has a larger variance than a quantile in the left tail and

vice-verse otherwise.

This result shows that when all experts are biased in the same direction, i.e., they on average

provide judgments in the same tail, then a quantile deduced in the same tail from their point

judgments has a lower variance as compared to the case when their judgments are used to deduce

a quantile in the other tail. For example, say three experts provide judgments, on average, for

the 23rd, 45th, and 38th quantile. Then the estimate obtained for the 15th quantile will be more

precise as compared to the estimate for the 85th quantile. By extension, if a large pool of experts

is available and it is desirable to deduce multiple quantiles with a constant precision, one should

select the experts such that the term [1 0](ZtΩ−1Z)−1[0 α2]
t is either equal to or close to zero. This

analysis provides a statistical backing to the notion that a diversity in judgments is valuable in

teams. Specifically, expert selection should be informed by the correlation between the judgments

of various experts as well as the average quantiles estimated by these experts.

4.3. Selecting the Optimal Set of Experts

We next consider the problem of selecting a set of K < m experts from the pool of m experts. This

focus is relevant for situations in which the budget restrictions or work load restrictions require

that experts are rationed among multiple teams or that only a limited number of experts are
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engaged. Let V = [v1 v2 . . . vm] denote a vector of binary decision variables denoting whether

or not experts j = 1, 2, ..., m are selected in the group for future elicitations. We would like to

determine the optimal composition of the group. To measure optimality, we continue to use the

objective function used in (9). Specifically, using optimal weights w∗ = at(ZtΩ−1Z)−1ZtΩ−1 for m

experts, the estimation variance is equal at(ZtΩ−1Z)−1a. Excluding a subset of experts will lead

to an increase in this variance. Accordingly we seek to determine the subset of exactly K experts

that should be included in the group while minimizing the estimation variance.

We use the big-M method of implied penalty to modify the variance-covariance matrix Ω for

this purpose. Specifically, we define:

ΩB =






v1ω11 +(1− v1)M . . . ω1m

...
...

...
ωm1 . . . vmωmm +(1− vm)M




 (11)

With this matrix, the problem of selecting K experts is specified as follows.

min
V

[α1 α2](Zt(ΩB)−1Z)−1[α1 α2]T (12)

s.t. vj ∈ {0,1} (13)
m∑

j=1

vj = K (14)

This formulation works as follows. Consider the problem in which we seek to reduce the group

size by one, i.e., K = m− 1 and in the candidate solution v1 = 0, i.e., expert 1 is to be removed

from the group. Substituting the value v1 = 0 in the matrix (11) we see that ωB
11 = M . A large

value of M ensures that the variance in the estimates of this expert are now effectively very large,

and moreover, the estimates of this expert are approximately independent from those of the other

experts. As a result, the optimal weight for this expert would be equal to zero, replicating the

situation when the expert is not present in the group.

In general the presence of binary variables implies that the problem cannot be solved in polyno-

mial time. When the group of experts is small even a complete enumeration is usually practical.

The selection of K experts among a set of m experts can be done in nCK ways. As an example for

selecting say 4 out 6 experts, this leads to a 6C4 = 15 combinations and the estimation variance

for each combination can be computed efficiently. When the number of combinations is large, we

have found three heuristics to perform well. These heuristics exploit the results developed earlier

in Proposition 2 for the equivalent sample size of each expert. In the first heuristic we rank order

experts based on the individual equivalent sample size determined using Proposition 1 and select
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the top K experts. This heuristic is easy to implement, nevertheless, it has the drawback that it

ignores the quantiles each expert estimates as well as the correlations between the judgments of

the experts. The second and third heuristics incorporate these correlations in the selection process.

In the second heuristic we start with the group size of zero. In the first step, we include the expert

with the largest equivalent sample size. Next we independently consider the remaining experts and

determine the decrease in the estimation variance when each of the expert is added. We then select

and add the expert whose addition to the group would lead to the largest decrease in variance, and

repeat this process until the group has K experts. In the third heuristic, we first consider the com-

plete set of experts. Next we consider individual experts and determine the increase in estimation

variance if the expert were removed from the set. We then select the expert whose removal from

the group would lead to the lowest increase in the estimation variance, and continue this process

until the group has K experts. For the sake of brevity we will not discus numerical results for the

performance of these heuristics.

5. Extensions

We next extend our technical development to the case when each expert provides multiple judg-

ments in Section 5.1, and in Section 5.2 we discuss the case when limited historical data are

available to calibrate an expert.

5.1. Combining Distribution Assessments

A key feature of our development is that experts’ judgments and the errors in these judgments are

quantified in the scale free domain. We next discuss how this quantification provides the ability to

combine the distributions implied by multiple judgments provided by more than one expert (we

thank an anonymous reviewer for suggesting this development). Specifically, consider that each

expert j responds to r=1,2,...R identical questions for an uncertain quantity or random variable

Y and provides point judgments ŷj = [ŷj1, . . . , ŷjR]t. As an example, the expert could provide

responses for the pessimistic, most likely, and optimistic values for the uncertainty. We assume

for notational ease that each expert answers the same R questions but this assumption can be

relaxed in a straight forward manner. The experts also provide these judgments for calibration

distributions i=1,2,...,n as values x̂ijr. These calibration data are first transformed into the cor-

responding standardized z-values, as ẑijr = F−1
i

(
Fi(x̂ijr;μi); 0,1

)
. The average quantile an expert

j provides in response to each of the r=1,2,...,R questions is determined in the standardized scale

as ˆ̄zjr =

∑
i ẑijr

n
.
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We next seek to quantify the variability in the judgments provided by expert j for the quantile

ˆ̄pj . In the absence of complete information for calibration distributions, we adopt a bootstrap

approach. Specifically, let x̂kj = [x̂k1j , x̂k2j , . . . , x̂knj ] denote bootstrap samples k = 1, 2, ..., K of

size n. For each sample we determine the average quantile implied by the expert’s judgments,

as ˆ̄pkj =

N∑

l

1(x̂klj > xlj)

n
, j = 1, 2 ..., m. We then translate this information into z-domain, as

ˆ̄zkj =
F−1( ˆ̄pkj ; 0,1)

n
, and we quantify the uncertainty in the quantile judgments, as V ar(ẑj) =

K∑

k=1

(ẑkj − z̄kj)2

K−1
, where z̄kj =

∑K

k=1 ẑkj

K
, and covariance between two experts j1, j2 as Cov(ẑj1 , ẑj2) =

K∑

k=1

(ẑkj1 − z̄kj1)(ẑkj2 − z̄kj2)

K−1
. From these covariances, we estimate the matrix Ω and then use the

optimal weights developed in Proposition 4.

5.2. Absence of calibration distributions and non location-scale distributions

We now extend the results to two settings. In the first setting complete calibration distributions

are not available and instead we only have historical data for the judgmental forecasts provided by

individual experts and the realized values. We first operationalize these data to deduce the quantile

provided by each expert using a frequency count. Specifically, for each expert j, we first determine

the frequency with which her judgments x̂ij exceed the observed values xij as
∑

i

1(x̂ij > xij).

From this information we deduce the quantile she provides on average, as ˆ̄pj =

∑

i

1(x̂ij > xij)

n
. For

example when ˆ̄pj = 0.4, it means that the expert provides us with the 40th quantile judgments, on

average. From this quantity, we deduce the quantile in the standardized z-value as ˆ̄zj = F−1( ˆ̄pj ; 0,1).

We next seek to quantify the variability in the judgments provided by expert j for the quan-

tile ˆ̄pj . In the absence of complete information for calibration distributions, we adopt a bootstrap

approach. Specifically, let x̂kj = [x̂k1j , x̂k2j , . . . , x̂knj ] denote bootstrap samples k = 1, 2, ..., K of

size n. For each sample we determine the average quantile implied by the expert’s judgments,

as ˆ̄pkj =

N∑

l

1(x̂klj > xlj)

n
, j = 1, 2 ..., m. We then translate this information into z-domain, as

ˆ̄zkj =
F−1( ˆ̄pkj ; 0,1)

n
, and we quantify the uncertainty in the quantile judgments, as V ar(ẑj) =

K∑

k=1

(ẑkj − z̄kj)2

K−1
, where z̄kj =

∑K

k=1 ẑkj

K
, and covariance between two experts j1, j2 as Cov(ẑj1 , ẑj2) =
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K∑

k=1

(ẑkj1 − z̄kj1)(ẑkj2 − z̄kj2)

K−1
. From these covariances, we estimate the matrix Ω and then use the

optimal weights developed in Proposition 4. The second extension is for the case when the under-

lying uncertainty does not have a location-scale distribution. For the sake of brevity we provide

the details in Appendix B.

6. Summary and Future Research

This paper addresses a frequently faced problem in R&D management: multiple experts provide

point judgments for the most likely potential of new candidate projects, and one needs to aggregate

these point judgments to deduce the average potential as well as the uncertainty in the project-

potential. These two quantities are required to make risk-return trade-offs during portfolio selection

and resource allocation decisions. In distributed R&D settings experts often differ in their experi-

ence and intuition which translates into differences in individual judgments for project-potential.

It is important to incorporate these individual-specific differences into mechanisms to deduce the

average potential of a project, its variability, or a combination of these two quantities. Accordingly,

we developed a two-step algorithmic approach. In Step 1 we characterize the judgments provided

by individual experts as the average quantile that their judgments correspond to and the variability

in this quantile. Then we use an optimization framework to deduce the mean, standard deviation

or a combination of these two quantities for a probability distribution. These estimates are then

used to make portfolio selection decisions.

This research can be extended to answers several questions in the context of R&D management.

First, in multi-year projects experts typically learn from prior experiences and their judgments are

expected to improve over time. Simultaneously it is likely that the new products being considered

are more complex and the heuristics developed by the experts on previous products may not

perform well for the future products considered in the R&D program. The net impact of these two

effects on the quality of judgments is not clear. Future empirical research should focus on this net

outcome by calibrating judgments of experts over a multi-period horizon in a learning environment.

Second, in several instances a prior distribution on the performance of a new product may be

available and this prior may need to be updated using the data generated during expert-calibration.

Future research should develop algorithms to support this Bayesian updating. Specifically, the

estimates obtained using the approach developed in this paper may not have a conjugate prior.

Furthermore in several instances it may be of interest to obtain estimates for multiple quantities

simultaneously, for example the mean and the standard deviation. These estimates, in general, are
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correlated. Furthermore based on calibration data they may also have distributions with different

parametric families. Traditional conjugate prior-posterior based framework for Bayesian updating

will not be adequate and one would need to resort to Monte Carlo simulation methods. Future

research should focus on fleshing out details of this simultaneous updating of multiple estimates.
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7. Appendix A: Proofs

Proof of Proposition 1: The variance of sample quantile for probability ˆ̄pj is equal to

ˆ̄pj(1− ˆ̄pj)
n(fs( ˆ̄zj))2

.

The variance in the judgments of expert j in the z-domain is equal to wjj . Next we equate

wjj =
ˆ̄pj(1− ˆ̄pj)

n(fs( ˆ̄zj))2
. Interchanging the places of n and wjj we obtain n =

ˆ̄pj(1− ˆ̄pj)

wjj(fs( ˆ̄zj))2
. Replacing n with

Nj we obtain the expression in the proposition. �

Proof of Proposition 2: We show that the function ωjj is convex with a minimum at f ′
s(ˆ̄zj) = 0.

To this end we first rewrite the function as ωjj =
ˆ̄pj(1− ˆ̄pj)

Nj

(
fs(ˆ̄zj)

)2 =
fs(ˆ̄zj)(1− fs(ˆ̄zj))

Nj

(
fs(ˆ̄zj)

)2 . Next we differen-

tiate the function to obtain its gradient as
∂ωjj

∂ ˆ̄zj

=
f ′

s(ˆ̄zj)− 2f ′
s(ˆ̄zj)fs(ˆ̄zj)

Nj

(
fs(ˆ̄zj)

)2 −
2f ′

s(ˆ̄zj)fs(ˆ̄zj)(1− fs(ˆ̄zj))

Nj

(
fs(ˆ̄zj)

)3

which on simplification reduces to
∂ωjj

∂ ˆ̄zj

=−
f ′

s(ˆ̄zj)

Nj

(
fs(ˆ̄zj)

)2 . The only feasible solution to this equation

is f ′
s(ˆ̄zj) = 0, i.e., at the mode. Next, we show that at this value the second derivative is positive.

To this end, we first note that
∂2ωjj

∂ ˆ̄z2
j

=−
f ′′

s (ˆ̄zj)

Nj

(
fs(ˆ̄zj)

)2 + 2
f ′

s(ˆ̄zj)

Nj

(
fs(ˆ̄zj)

)3 . Substituting f ′
s(ˆ̄zj) = 0, we

obtain
∂2ωjj

∂ ˆ̄z2
j

= −
f ′′

s (ˆ̄zj)

Nj

(
fs(ˆ̄zj)

)2 . Next, we observe that f ′
s(ˆ̄zj) = 0 at the mode of the distribution.

Furthermore, at the mode, the slope changes from positive to negative. It follows that
∂2ωjj

∂ ˆ̄z2
j

> 0

at the mode.

Proof of Proposition 3: We start by noting that the judgments provided by expert j can be

stated as xj = μ1 + zjμ2 + ε. We next adopt the approach used by Lloyd (1952) for the rest of

the proof. These judgments have expectations E[xj ] = μ1 + zjμ2 that are linear functions of the

two parameters. Furthermore, the variances and the covariances in the z-transformed judgments

are available to us from the calibration exercise. The transformation means that the variance-

covariance matrix we calculated is a scaled version of the variance-covariance matrix of expert

judgments. As a result the general form of the least-squares theorem is applicable, and a linear

function of the judgments provide unbiased estimates of μ1, μ2 with minimum variance. �

Proof of Proposition 4: The proof is in two steps. In the first step we obtain the estimates of μ1

and μ2 by using at = [1 0] and at = [0 1] respectively. The derivation of the solution to the problem

min
μ

(ŷ−Zμ)tΩ−1(ŷ−Zμ)

is available in a number of texts including Greene (2003); this solution is obtained as μj =

at(ZtΩ−1Z)−1ZtΩ−1ŷ with an appropriate value of the vector a. It follows that the estimate μj is

a weighted average of judgments ŷ where the weights are equal to w∗ = at(ZtΩ−1Z)−1ZtΩ−1.
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In Step 2 we note that we sought out to estimate the function

g(μ1, μ2) = α1μ1 + α2μ2.

From the properties of linear estimation it follows that we can obtain the estimate ĝ(μ1, μ2) as

ĝ(μ1, μ2) = α1μ̂1 + α2μ̂2. We can further rewrite the R.H.S. as [α1 0][μ1 , μ2]T + [0, α2][μ1 , μ2]T =

[α1, α2][μ1 , μ2]T. It follows that the optimal weights for the judgments are obtained after substi-

tuting [α1, α2] for at. �

Proof of Proposition 5: We start with the observation made in Section 4.2.1 that the variance

of the quantile estimate g(μ̂1, μ̂2) = μ̂1 + α2μ̂2 is equal to

Var(g(μ̂1, μ̂2)) = [1 0](ZtΩ−1Z)−1[1 0]t + [0 α2](ZtΩ−1Z)−1[0 α2]
t +2[1 0](ZtΩ−1Z)−1[0 α2]

t (15)

The first two terms are always positive and we focus on the third term. For m experts with a

diagonal matrix Ω, this last term is obtained as

[1 0](ZtΩ−1Z)−1[0 α2]
t =−α2

m∑

j=1

ˆ̄zjσ
2
1σ

2
2 ...σ

2
j−1σ

2
j+1....σ

2
m

( ˆ̄z1 − ˆ̄z2)2σ2
3σ

2
4 ...σ

2
m +( ˆ̄z1 − ˆ̄z3)2σ2

2σ
2
4 ...σ

2
m + ...(m

2 )terms
(16)

The denominator is always positive, and we focus on the numerator. When α2 < 0, i.e., when a

left tail quantile is to be deduced and for each expert ˆ̄zj < 0 the numerator and hence the complete

term is negative. It follows that the variance in (27) is lower. In contrast, the variance will be

higher when a right tail α2 > 0 is to be deduced. A similar analysis is straightforward for the case

when for each expert ˆ̄zj > 0. �

8. Appendix B: Extension to non location-scale distributions

The technical development discussed so far for location–scale distributions also enables us to esti-

mate the parameters of Johnson distributions used to model probability distributions with a greater

degree of flexibility. The key connection between location–scale distribution and Johnson distribu-

tions is that random variables X with Johnson distributions with parameters θ result in a normal

variable Y with parameters θ after a non-linear monotonic transformation, g – i.e., g(X) = Y

(Johnson 1949). For example, if X is a lognormal random variable (type 2 Johnson variable), then

Y = ln(X) is a normal random variable.

In the absence of elicitation errors, the estimation of the parameters of X is straightforward.

For any x ∈ R we have Pr
{
X ≤ x

}
= Pr

{
g(X) ≤ g(x)

}
where g(x) is non-decreasing in x; hence
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the pi-quantiles of X and g(X), denoted respectively as x(pi) and xg(pi), satisfy the relationship

g(x(pi)) = xg(pi). Therefore, one could simply take the inverse g−1 of quantile estimates x̂i to

transform them on the underlying normal distribution, and then estimate the parameters of this

underlying normal distribution using the results developed earlier. However, this process does not

carry over to when expert’s estimates have errors. As an example for the log-normal distribution,

any elicited quantile satisfies ln(x̂i) = ln(xi + εi), but clearly ln(x̂i) 6= ln(xi) + ln(εi). However, we

can approximate g(X) using the second–order Taylor series expansion of g(xi) about x̂i = xi + εi

as:

g(xi)≈ g(x̂i)+ g′(x̂i)(xi − x̂i)+
g′′(x̂i)

2
(xi − x̂i)2. (17)

Since g(xi) follows a normal distribution with parameters θ, it can be expressed as g(xi) = θ1 +θ2zi.

Combining this with (17), we obtain an approximate model for the estimation of parameters θ for

g(X) as

g(x̂i)≈ θ1 + θ2zi + eg
i , (18)

where the transformed elicitation errors eg
i = x̂g

i −xg
i are obtained from (17) as eg

i = g(x̂i)− g(xi) =

g(x̂i)− (θ1 + θ2zi) ≈ g′(x̂i)εi + g′′(x̂i)

2
ε2
i . The second term is a bias that comes from the non-linear

transformation of the estimated quantile of X to g(X). For any given elicited quantile x̂i, this bias

is denoted as B(x̂i) ≡ E
[
eg

i

]
= 1

2
g′′(x̂i)σ2

εi
. Substituting this bias in (18), we obtain the following

model to estimate the parameters θ1 and θ2 of the normal pdf of g(X):

g(x̂i)+ B(x̂i) = θ1 + θ2zi + eg
i . (19)

The variance-covariance matrix Ω̂ for the errors in (19) is determined as follows:

Ω̂ii = E
[ (

eg
i −E

[
eg

i

])2 ]
= E

[ (
g′(x̂i)εi +

1
2
g′′(x̂i)ε2

i −
1
2
g′′(x̂i)σ2

)2 ]

Ω̂ij = E
[ (

eg
i −E

[
eg

i

])(
eg

j −E
[
eg

j

]) ]

= E
[ (

g′(x̂i)εi +
1
2
g′′(x̂i)ε2

i −
1
2
g′′(x̂i)σ2

)(
g′(x̂j)εj +

1
2
g′′(x̂j)ε2

j −
1
2
g′′(x̂j)σ2

) ]

Since g(x) transformations for Johnson distributions are tractable, each term in the expressions

for Ω̂ii and Ω̂ij admits algebraic simplification. Once the matrix Ω̂ is determined, the estimates θ̂

are obtained by using Proposition 4, replacing Ω with Ω̂.




