Objective:
To evaluate:
(1) the operational and economic feasibility of electrification strategies, and
(2) the life-cycle emissions and their associated impacts, relative to conventional petroleum-powered aircraft.

Today’s focus:
Comparison of fuel production and distribution, with specific focus on energy demand and upstream investments for PtL and hydrogen scenarios

Project Benefits:
Provide data and guidance on the most promising electrification approaches for aviation

Research Approach (fuel production and distribution):

Energy and fuel demand
Calculate the fuel and energy demand for year-2019 traffic

Fuel production and logistics
Model the production and logistics for aviation fuels

Energy system
Model the electric power generation to produce fuels

Airport fuel infrastructure
Model required fueling infrastructure

Operating Costs
Energy demand
Other environmental impacts

Investment pathways (CapEx)
Lifecycle emissions and impacts

Major Accomplishments (to date):
For PtL and LH₂ scenarios: We analyzed...

1. Production pathways and lifecycle impacts
2. Energy demand
3. Investments for fuel production
4. Logistics and distribution challenges

Future Work / Schedule:
- Integration of aircraft model to assess feasibility and impacts at the system-level
- Provide integrated economic and environmental assessment
- Compare to other electrification strategies
Production of LH$_2$ and PtL as aviation fuels: Role of electric power

(Liquid) Hydrogen

LH$_2$ will require new aircraft and fueling systems

LH$_2$ can be produced with different cost and GHG footprint

Electrolysis with carbon-free electricity offers potential for near-zero GHG emissions

PtL fuels are liquid drop-in fuels derived from CO$_2$ and electricity.

Example: Co-electrolysis pathway:

Lifecycle GHG emissions: dependent on carbon intensity of electricity

Power consumption: 1.4 to $1.7 \frac{MJ_{(elec)}}{MJ_{(fuel)}}$

Power consumption: $> 1.8 \frac{MJ_{(elec)}}{MJ_{(fuel)}}$
Energy requirements for PtL and LH$_2$ production: *Paris CDG*

Electric power consumption of fuel production
broken down by process step, in GW

<table>
<thead>
<tr>
<th>Process</th>
<th>Power Consumption (GW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-fuel (RWGS-PEM)</td>
<td>1.2</td>
</tr>
<tr>
<td>E-fuel (RWGS-SOEC)</td>
<td>3.2</td>
</tr>
<tr>
<td>E-fuel (Coelec)</td>
<td>1.1</td>
</tr>
<tr>
<td>LH$_2$</td>
<td>2.9</td>
</tr>
<tr>
<td>Total</td>
<td>13.09</td>
</tr>
<tr>
<td>Total</td>
<td>17.35</td>
</tr>
</tbody>
</table>

For comparison:
- French total installed capacity: ~133 GW
- Largest nuclear plant in the world (capacity): ~7 GW
- Largest solar power plant (capacity): ~2.2 GW

How much land is needed to produce LH$_2$ using renewable solar?
- H$_2$ Gas Pipeline + Airport Liquefaction: >490 km2
- Cryogenic H$_2$ Transport from Offsite Liquefaction: >585 km2
- Electrofuel: >700 km2
Energy requirements for PtL and LH$_2$ production: **Global**

Electric power consumption of LH$_2$ fuel production, *in GW, by airport*

<table>
<thead>
<tr>
<th>Airport</th>
<th>E-fuel (RWGS-PEM)</th>
<th>E-fuel (RWGS-SOEC)</th>
<th>E-fuel (Coelec)</th>
<th>LH$_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>LHR</td>
<td>1.5 GW</td>
<td>5.6 GW</td>
<td>5.9 GW</td>
<td>12.8 GW</td>
</tr>
<tr>
<td>DXB</td>
<td>2.7 GW</td>
<td>6.5 GW</td>
<td>6.3 GW</td>
<td>12.6 GW</td>
</tr>
<tr>
<td>LAX</td>
<td>2.6 GW</td>
<td>6.1 GW</td>
<td>6.2 GW</td>
<td></td>
</tr>
<tr>
<td>JFK</td>
<td>1.7 GW</td>
<td>3.0 GW</td>
<td>8.4 GW</td>
<td></td>
</tr>
<tr>
<td>PEK</td>
<td>4.4 GW</td>
<td>8.5 GW</td>
<td>8.5 GW</td>
<td></td>
</tr>
<tr>
<td>HKG</td>
<td>3.0 GW</td>
<td>8.4 GW</td>
<td>8.2 GW</td>
<td></td>
</tr>
<tr>
<td>CDG</td>
<td>2.2 GW</td>
<td>7.1 GW</td>
<td>7.9 GW</td>
<td></td>
</tr>
<tr>
<td>SIN</td>
<td>1.5 GW</td>
<td>7.1 GW</td>
<td>7.9 GW</td>
<td></td>
</tr>
<tr>
<td>ICN</td>
<td>3.1 GW</td>
<td>9.9 GW</td>
<td>8.9 GW</td>
<td></td>
</tr>
<tr>
<td>FRA</td>
<td>1.6 GW</td>
<td>6.3 GW</td>
<td>6.3 GW</td>
<td></td>
</tr>
<tr>
<td>SFO</td>
<td>1.5 GW</td>
<td>6.1 GW</td>
<td>6.1 GW</td>
<td></td>
</tr>
<tr>
<td>PVG</td>
<td>2.7 GW</td>
<td>6.5 GW</td>
<td>6.5 GW</td>
<td></td>
</tr>
<tr>
<td>DOH</td>
<td>1.3 GW</td>
<td>3.5 GW</td>
<td>3.5 GW</td>
<td></td>
</tr>
<tr>
<td>ORD</td>
<td>2.6 GW</td>
<td>6.2 GW</td>
<td>6.2 GW</td>
<td></td>
</tr>
<tr>
<td>BKK</td>
<td>1.4 GW</td>
<td>5.9 GW</td>
<td>5.9 GW</td>
<td></td>
</tr>
<tr>
<td>NRT</td>
<td>1.5 GW</td>
<td>5.6 GW</td>
<td>5.6 GW</td>
<td></td>
</tr>
<tr>
<td>AMS</td>
<td>4.0 GW</td>
<td>5.3 GW</td>
<td>5.3 GW</td>
<td></td>
</tr>
<tr>
<td>ATL</td>
<td>2.9 GW</td>
<td>5.2 GW</td>
<td>5.2 GW</td>
<td></td>
</tr>
<tr>
<td>HND</td>
<td>2.9 GW</td>
<td>5.2 GW</td>
<td>5.2 GW</td>
<td></td>
</tr>
<tr>
<td>IST</td>
<td>2.9 GW</td>
<td>5.2 GW</td>
<td>5.2 GW</td>
<td></td>
</tr>
</tbody>
</table>

Capacity of largest existing nuclear power station

U.S power generation capacity (2019)

Global cumulative PV capacity (2019)

Year-2019 passenger aviation

Electric power consumption of fuel production broken down by process step, *in GW*
Investment requirements for scaled-up LH\textsubscript{2} use in aviation

Upstream fuel production and airport fuel distribution investment

in trillion USD

For comparison:
- Global power sector investment 2020: $679bn USD
- Global year-2020 solar-PV investment: $108bn USD
- IRENA: Yearly energy investment 2021-2050 PES: $3.3 tr USD
- IRENA: Yearly investment scenario 2021-2050 TES: $4.4 tr USD

Airport infrastructure

- Truck-Based Refuelling
- Remote Hydrant Refuelling
- At-Gate Hydrant Refuelling

Does not consider:
- Storage to smooth out electricity production
- Investments in global LH\textsubscript{2} distribution infrastructure

Year-2019 passenger aviation
4 LH₂ Distribution Challenges

- LH₂ volume is ~4x higher than PtL.
- Handling of cryogenic fuel requires insulated equipment.
- Different layouts are possible for hydrogen production and logistics.

Transport challenges (Case study: CDG)

- Maritime + Road transport: ~170 tanker ship and ~300,000 tanker truck deliveries per year to supply CDG (all flights).
- Gaseous pipeline: Gaseous Hydrogen can be transported to an on-site liquefaction facility.
- LH₂ pipeline: Proposed, but unproven and with limited range.

Airport distribution challenges

- Longer refueling times
- New infrastructure needed (likely in addition to existing infrastructure for transition)