USDOT National University Transportation Center
Progress Performance Report #4

Submitted to: U.S. Department of Transportation
Office of the Assistant Secretary for Research and Technology (OST-R)

Grant Number: 69A3551947137
Project Title: National Center for Transportation Infrastructure Durability & Life-Extension (TriDurLE)

Center Director: Xianming Shi, Ph.D., P.E. Associate Professor
Department of Civil and Environmental Engineering
Washington State University
Pullman, WA 99163
xianming.shi@wsu.edu | 509-335-7088

Submission Date: October 30, 2021
DUNS: 04-148-5301
EIN: 91-6001108
Recipient Organization: Washington State University

Project/Grant Period: July 1, 2019 - September 30, 2023
Reporting Period Start Date: April 1, 2021
Reporting Period End Date: September 30, 2021
Report Term or Frequency: Semi-annual

Signature of Submitting Official:

[Signature]
1. ACCOMPLISHMENTS

1.1 What are the major goals and objectives of the program?

1.2 What was accomplished under these goals?

1.3 What opportunities for training and professional development has the program provided?

1.4 How have the results been disseminated?

1.5 What do you plan to do during the next reporting period to accomplish the goals and objectives?

2. PARTICIPANTS AND COLLABORATING ORGANIZATIONS

2.1 Who has worked on the program?

2.2 What organizations have been involved as partners?

2.3 Have other collaborators or contacts been involved?

3. OUTPUTS

3.1 Publications, conference papers, and presentations

3.2 Website(s) or other internet site(s)

3.3 Technologies or techniques

3.4 Inventions, patent applications, and/or licenses

3.5 Other output

4. OUTCOMES

4.1 Increased understanding and awareness of transportation issues

4.2 Passage of new policies, regulation, rulemaking, or legislation

4.3 Increases in the body of knowledge

4.4 Improvement of existing techniques, practices, technologies

4.5 Enlargement of the pool of trained transportation professionals

4.6 Incorporation of new techniques, practices, technologies

5. IMPACTS

5.1 What is the impact on the development of the principal discipline(s) of the program?

5.2 What is the impact on other disciplines?
5.3 What is the impact on the development of transportation workforce development? ________________ 16
5.4 What is the impact on physical, institutional, and information resources at the university or other partner institutions? __ 16
5.5 What is the impact on technology transfer? __ 16
5.6 What is the impact on society beyond science and technology? ___ 16

6. CHANGES/PROBLEMS __ 17
 6.1 Changes in approach and reasons for change ___ 17
 6.2 Actual or anticipated problems or delays and actions or plans to resolve them __________________________ 17
 6.3 Changes that have a significant impact on expenditures ___ 17
 6.4 Significant change in use or care of animals, human subjects, and/or biohazards ______________________ 17
 6.5 Changes of primary performance site location from that originally proposed __________________________ 17
 6.6 Additional information regarding products and impacts ___ 17

7. SPECIAL REPORTING REQUIREMENTS __ 17
 APPENDIX A ___ 18
 APPENDIX B ___ 19
1. ACCOMPLISHMENTS

1.1 What are the major goals and objectives of the program?

TriDurLE’s strategic priority is to improve the durability and extend the life of transportation infrastructure with cost-effective innovations and holistic solutions to enhance multimodal infrastructure durability. The center is conducting multidisciplinary and multimodal research, education and workforce development, and technology transfer to directly support the USDOT’s strategic goal of infrastructure durability and life extension while providing secondary benefits for other relevant strategic goals such as safety, mobility, environmental sustainability, and building a diverse transportation workforce.

The National UTC TriDurLE is concerned with the following strategic goals:

- Facilitating innovations in data modeling/management, analytical tools, and decision-making related to infrastructure durability and life-extension.
- Enhancing understanding of transportation infrastructure performance and asset management via condition monitoring and remote sensing.
- Extending the service life of transportation infrastructure and addressing durability issues through new materials and technologies and best practices.
- Leading the way in education, workforce development, capacity building, and technology transfer.

1.2 What was accomplished under these goals?

Research

TriDurLE is funding 51 research projects for years one (26 projects) and two (25 projects) combined. Most year one projects were granted a no-cost time extension because of delays due to the COVID-19 Pandemic. One university completed and submitted its final report. The following are reports from individual universities.

The research teams at the University of Colorado Denver (UCD) have a wide variety of project scopes ranging from transportation problems to structural problems, including computer-aided analysis. Three projects were funded to accomplish the research objectives. All PIs has been working hard and active publication activities are underway to translate research into practice. Researcher Wesley Marshall of UCD submitted the final report for his project titled "Evaluating Sidewalk Infrastructure & Prioritizing Investment" for this reporting period and also published two journal papers, one conference paper, and presented at two academic conferences.

The two research goals of University of Utah were: 1) performance of bridge columns constructed using accelerated bridge construction methods and the development of cost-effective retrofits when the columns are subjected to corrosion and seismic loading; and 2) the development of holistic methodologies for improving asphalt mix durability. Researchers completed analysis of the seismic performance of corroded columns and will be presenting the results at the TriDurLE Symposium. They have also begun construction of four columns with accelerated bridge construction methods and will soon be initiating accelerated corrosion for three of these columns. Also, testing was started to support the methodologies that are being proposed. A new MSc student started to work on the project January 2021. The results of the research are being processed and a presentation is also being prepared for the TRB conference. For goal two, UU has completed the first task of creating a comprehensive literature review and is in the process of summarizing it.

South Dakota State University developed an AI-based computer vision software that can perform preliminary and detailed serviceability assessments of RC bridge columns after earthquakes. A website was developed to
demonstrate the implementation of the post-event inspection/assessment tools. The most comprehensive experimental database of RC bridge columns was developed and is publicly available. The year-one project is almost complete, and a 30% progress was reported for two other projects from year-2 funding.

Alabama A&M developed a model to assess the properties of inundated collapsible soils that has been integrated into a general interactive soil-pile model. The inductive soil-pile model has the capabilities to evaluate the downdrag forces acting on the pile due to soil inundation. A computer code (software package) with a friendly graphics-user interface has been developed to implement the previously established soil-pile model. As a result, the user can determine and visualize the distribution of the axial force along the pile length including downdrag force (negative shin friction) along with the pile and the accompanying pile settlement.

Following the collection of ultrasonic data from a set of corroding samples, Florida Atlantic University completed an initial analysis to verify that the proposed model provided a reasonable match to the measurements. In the meantime, a graduate student was hired to continue with the data collection and simulation. With the help of a graduate student, researcher Beaujean is currently developing an optimization code to match simulated and measured data by adjusting the simulated physical properties of the reinforced concrete samples.

Washington State University researcher Haifang Wen reported that their investigators have designed a new butterfly double-wedge test specimen that could effectively be used in both strength tests and fracture tests. They have numerically analyzed the butterfly specimen's wedge angle (25-75 degrees) using commercial finite element software, ABAQUS, for tension, shear, fracture mode I, and fracture mode II loads. They have also designed a single test fixture to perform the said tests. This fixture is currently in the manufacturing stage and the team has conducted an online survey to identify the best practices in shotcrete, which was distributed among state DOTs and industry practitioners. Based on the literature review and the shotcrete survey, the investigators have decided to use direct shear and pull-off tests to compare the results of the butterfly test specimens. The investigators are currently retrieving 4" cylinders from shotcrete panels that have previously been cast for these tests.

Ji Yun Lee’s team at Washington State University has identified key variables in the corrosion process via correlation analysis. A database of time-dependent probabilistic capacity for deteriorating bridge columns has been created through section moment-curvature analyses using the fiber section modeling technique in OpenSees. Moment and curvature values at multiple limit states of sections including concrete cover cracking, rebar yielding, concrete cover spalling, concrete core crushing, and rebar snapping or buckling have been identified as output variables in the created database, together with environment, geometrical, and material variables as input variables. Based on the created database, various ML approaches such as multi-layer neural network, random forests, and gradient boosting trees have been optimized through multi-fold cross validation method to develop ML prediction models for time-dependent multi-state capacity models for the sake of fragility modeling. Possible sources of uncertainties in transportation network resilience assessment have been identified and quantitatively modeled. They include the parameters in the corrosion process; earthquake location, frequency, and intensity; traffic volumes; and the percentage of connected and autonomous vehicles in a mixed traffic environment. The reliabilities of information obtained from a set of monitoring and inspection techniques have been quantified and used to update the probability density function of each random variable at every discrete time step.

Xianming Shi’s team at Washington State University has made significant progress in the following TriDurLE projects: (Year one): Impacts of Magnesium Chloride Deicer on the Durability of Nanosilica-Modified HVA Concrete; Developing Enhanced Performance Curves of ITD Asphalt Pavements by Mining the Historical Data; Design of Long-Lasting Discrete Sacrificial Anode for Corrosion Mitigation of Reinforcement in Chloride Contaminated Concrete. (Year two): Design of Fly Ash-based Geopolymer Concrete-filled FRP Tube Composite for Highly Durable and Environmentally Friendly Infrastructure. Other projects have experienced significant
delays due to COVID-19 pandemic induced challenges in personnel and supply availability.]ne new Ph.D. student and one new postdoctoral researcher were hired during August 2021 to speed up the project progress.

Leadership

TriDurLE is organizing its first annual Symposium to take place virtually December 6-7, 2021. Currently there are 48 speakers and 4 keynote speakers as well as a student poster competition. Two industry sponsors will be funding speaker and poster cash awards.

At Washington State University (WSU), Dr. Xianming Shi won the following awards:

- 2021 Environmental Leadership Award (research category), Salt Symposium award committee.
- ASCE Publishing’s Editor’s Choice Paper, 2020

The following are some of Dr. Xianming Shi’s other leadership experience during the reporting time period

- Director, Washington Transportation Research Center (TRAC), September 2021 – Present
- Interim Chair, Department of Civil & Environmental Engineering, Washington State University, August 2021 – Present
- Associate Editor, Journal of Nondestructive Evaluation, 2020-Present
- Editorial Board Member, International Journal of Structural Integrity, 2021-2024
- Editorial Board Member, International Journal of Transportation Science and Technology, 2018-Present
- Organizing committee, 5th International Conference on Transportation Infrastructure and Materials, Oct. 21-22, 2021, Changsha, China.

Dr. Jenny Liu of Missouri University of Science & Technology

- was appointed as Associate Editor of ASCE Journal of Cold Regions Engineering
- was appointed Committee Communication Coordinator of TRB Committee on Pavement Preservation.
- Session Chair, 2021 Regional Conference on Permafrost and 19th International Conference on Cold Region Engineering, October 24–29, 2021 (virtual).

Jenny Liu, Xiong Zhang, and Xianbiao Hu served as Session Chairs for Transportation Research Congress, November 5-7, 2021 Hangzhou, China (hybrid)

Xiong Zhang was a panelist at the TRB webinar on "Ensuring Construction Quality Assurance with Light-Weight Deflectometers" September 30, 2021.

Education and Workforce Development

Washington State University trained two postdoctoral research associates, six Ph.D. students, one M.S. student, and one undergraduate student. Some of the research associates and students have published journal articles and conducted presentations in collaboration with the project PI, as detailed in the later section. One research team has submitted a full-length international conference paper (ICOSSAR 2021-22).

Jun Liu, PhD student at Missouri S&T, received the 2020-2021 CEC Dean’s PhD Scholar Award in recognition of his scholarly productivity.
South Dakota State University partially or fully supported three students under the UTC funding in the current reporting period.

University of Utah hired a new PhD student to work on the project since January 2021 and an undergraduate student began working on the project September 2021.

Florida Atlantic University’s research on crack propagation detection using ultrasonics was presented during a seminar to external visitors in September 2021. Florida Atlantic University also presented a webinar to 15 graduate students (Graduate seminar Fall/2021 EML 5937 OME department, September 19, 2021), presenting the results of the on-going monitoring that provides evidence of corrosion of the rebar after initiation. Also, certain aspects of sound propagations in solids were covered in an undergraduate course (Underwater Acoustics) and its graduate counterpart (Ocean and Seabed Acoustics) and several aspects of the statistical analysis approach have been covered in an undergraduate course (Ocean and Environmental Data Analysis).

The CWRU team has submitted abstracts of two international conference papers (IABMAS 2022). Both research teams will disseminate the research results at international conferences in 2022.

University of Colorado Denver trained graduate students and technical staff members were exposed to state-of-the-art research environments, which would benefit their professional experiences.

Technology Transfer

The WSU team filed two provisional patents (detailed later) and the Case Western Reserve University research team has filed an invention disclosure with CWRU.

Diversity

TriDurLE is committed to engaging diverse and underrepresented groups with a goal of increasing interest in STEM disciplines and awareness of careers in the transportation fields. These efforts are focused on providing opportunities for minority students from high school through post-doc to participate in transportation-related research, providing funding for students to participate in symposiums and conferences that provide diversity-related workshops, and providing fellowships to graduate students pursuing transportation-related degrees. During this reporting period, TriDurLE has developed the following opportunities to promote diversity:

- Diverse Research Scholarship for High School and Undergraduate Students (awarded to 1 female student to date)
- Diversity Graduate Research Fellowship (awarded to 3 students)
- Diversity Travel Grant for Students (awarded to 3 students to date)
- Diversity Travel Grant for Faculty and Staff

See Table A3 for more detailed information about opportunities provided for diverse students by TriDurLE partners.

1.3 What opportunities for training and professional development has the program provided?

TriDurLE provided the following webinars for this reporting period and one on-campus lecture. Recordings were posted on the TriDurLE YouTube channel and linked to the TriDurLE website.

Table 1.1 TriDurLE Webinars

<table>
<thead>
<tr>
<th>Date</th>
<th>Speaker</th>
<th>Title</th>
<th>Attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>April 22, 2021</td>
<td>Henry V. Burton, Associate</td>
<td>Seismic Risk and Resilience Modeling of</td>
<td>YouTube: 30</td>
</tr>
</tbody>
</table>
1.4 How have the results been disseminated?

TriDurLE hosted monthly webinars and our universities submitted peer-reviewed publications, presentations at professional meetings, and research meetings with state DOTs to share preliminary results. TriDurLE is also active on social media sites Facebook and Twitter and has an up-to-date website for disseminating information.

1.5 What do you plan to do during the next reporting period to accomplish the goals and objectives?

Research projects will continue moving forward and progress made. Many year one projects that were granted a no-cost time extension will be completed in spring and summer 2022. Research findings will be generated and publications submitted to top-tier journals. When the pandemic subsides, active interactions with other researchers and engineers are expected. TriDurLE will host its first symposium in December 2021. This event will raise awareness of the Center and associated activities (research, diversity, education, workforce development, collaboration, and technology transfer).

University of Utah reported specifically that they anticipate results for both the corrosion and seismic testing in the next reporting period. To accomplish their goals they plan to complete construction of the four columns, initiate and complete the corrosion process for three of the columns and test all four columns under simulated seismic loads. In addition, the results of these tests will be disseminated through conference presentations and journal publications.

2. PARTICIPANTS AND COLLABORATING ORGANIZATIONS

2.1 Who has worked on the program?

A complete list of PIs and Co-PIs can be found at https://tridurle.wsu.edu/researchers/
Table 2.1 Program participants

<table>
<thead>
<tr>
<th>Name & Institution</th>
<th>Program/ Project Role</th>
<th>Funding Support</th>
<th>Countries of foreign collaboration</th>
<th>Travel to foreign country and duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xianming Shi, Washington State University</td>
<td>Director, oversees all operations</td>
<td>WSU</td>
<td>China</td>
<td>None</td>
</tr>
<tr>
<td>Catherine Armwood, Tennessee State University</td>
<td>Site Director, Director of Diversity</td>
<td>TSU</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Jenny Liu, Missouri University of Science & Technology</td>
<td>Site Director, Associate Director of Research</td>
<td>MST</td>
<td>China</td>
<td>None</td>
</tr>
<tr>
<td>Chris Pantelides, University of Utah</td>
<td>Site Director</td>
<td>UU</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Mohamad Ashour, Alabama A&M</td>
<td>Site Director</td>
<td>AL A&M</td>
<td>China, South Korea</td>
<td>None</td>
</tr>
<tr>
<td>Yail Jimmy Kim, University of Colorado Denver</td>
<td>Site Director</td>
<td>UCD</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Francisco Presuel-Moreno, Florida Atlantic University</td>
<td>Site Director</td>
<td>FAU</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Mostafa Tazarv, South Dakota State University</td>
<td>Site Director</td>
<td>SDSU</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Xiong (Bill) Yu, Case Western Reserve University</td>
<td>Site Director</td>
<td>CWRU</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Dan Zollinger, Texas A&M University</td>
<td>Site Director</td>
<td>TAMU</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Waheed Uddin (Deceased), University of Mississippi</td>
<td>Site Director</td>
<td>UM</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Cheryl Reed, Washington State University</td>
<td>Outreach Coordinator</td>
<td>WSU</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>

2.2 What organizations have been involved as partners?

Table 2.2 A List of Organizations Creating Partnerships with TriDurLE

<table>
<thead>
<tr>
<th>Organization Name</th>
<th>Type / Location</th>
<th>Partners Contribution to Project</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Financial/ Materials Support</td>
</tr>
<tr>
<td>Denver Streets Partnership</td>
<td>City/Denver, CO</td>
<td>X</td>
</tr>
<tr>
<td>University of New Mexico</td>
<td>State/NM</td>
<td></td>
</tr>
<tr>
<td>Northeast Forestry University</td>
<td>China</td>
<td></td>
</tr>
<tr>
<td>Precast/Prestressed Concrete Institute</td>
<td>Chicago, IL</td>
<td>X</td>
</tr>
<tr>
<td>Company/Institution</td>
<td>Location</td>
<td>Notes</td>
</tr>
<tr>
<td>---------------------</td>
<td>----------</td>
<td>-------</td>
</tr>
<tr>
<td>Gage Brothers</td>
<td>Sioux Falls, SD</td>
<td>X X</td>
</tr>
<tr>
<td>Headed Reinforcement Corp.</td>
<td>Fountain Valley, CA</td>
<td>X X</td>
</tr>
<tr>
<td>Alabama Department of Transportation</td>
<td>State/AL</td>
<td>X</td>
</tr>
<tr>
<td>Florida Dept. of Transportation</td>
<td>State/FL</td>
<td>X</td>
</tr>
<tr>
<td>Missouri DOT</td>
<td>State/MO</td>
<td>X X X</td>
</tr>
<tr>
<td>Colorado Dept. of Transportation</td>
<td>State/CO</td>
<td>X X X</td>
</tr>
<tr>
<td>Tencate North America</td>
<td>Industry</td>
<td>X</td>
</tr>
<tr>
<td>INSPIRE</td>
<td>Institution</td>
<td>X</td>
</tr>
<tr>
<td>University of Tennessee</td>
<td>Institution</td>
<td>X</td>
</tr>
<tr>
<td>Missouri S&T</td>
<td>Institution</td>
<td>X</td>
</tr>
<tr>
<td>WA State DOT</td>
<td>State/WA</td>
<td>X</td>
</tr>
<tr>
<td>Washington Transportation Improvement Board</td>
<td>Institution/WA</td>
<td>X</td>
</tr>
<tr>
<td>Conco</td>
<td>Industry/WA</td>
<td>X</td>
</tr>
<tr>
<td>Washington State University</td>
<td>Institution/WA</td>
<td>X X</td>
</tr>
<tr>
<td>Case Western Reserve University</td>
<td>Institution/</td>
<td>X X</td>
</tr>
<tr>
<td>Utah DOT</td>
<td>State/UT</td>
<td>X</td>
</tr>
<tr>
<td>GCP Applied Technologies, Inc.</td>
<td>Industry/MA</td>
<td>X</td>
</tr>
<tr>
<td>Sika Corp.</td>
<td>Industry/NJ</td>
<td>X</td>
</tr>
<tr>
<td>Ohio Flexible Pavement Association</td>
<td>Industry/OH</td>
<td>X</td>
</tr>
<tr>
<td>Kokosing Materials Inc.</td>
<td>Industry/OH</td>
<td>X</td>
</tr>
<tr>
<td>Ohio DOT</td>
<td>State/OH</td>
<td>X</td>
</tr>
<tr>
<td>Politecnico di Milano</td>
<td>Industry/Italy</td>
<td>X X X</td>
</tr>
</tbody>
</table>

2.3 Have other collaborators or contacts been involved?

Nothing to Report

3. OUTPUTS

South Dakota State University developed an AI-based computer vision software that can perform preliminary
and detailed serviceability assessments of RC bridge columns after earthquakes. A website was developed to demonstrate the implementation of the post-event inspection/assessment tools. Researchers collected and digitized the most comprehensive experimental database of RC bridge columns, which is publicly available through The DesignSafe Data Deport, an NSF supported tool to store and publish data (https://doi.org/10.17603/ds2-1p5e-1v55). More information can be found at the research website (https://sites.google.com/people.unr.edu/mostafa-tazary/research/post-event-serviceability).

WSU and CWRU’s collaborative project led by Dr. Lee identified sensitive parameters in the capacity modeling of deteriorating reinforced concrete bridge columns help increase the knowledge in life-cycle analysis of deteriorating civil structures. The developed machine learning model significantly improves the existing technique, which helps engineers release their burden from the conventional time-consuming physics-based section moment-curvature analysis. A systematic procedure for uncertainty quantification, propagation, and reduction developed as part of a dynamic Bayesian network framework increases understanding of uncertainties existing in the parameters, theoretical and empirical models, monitoring and inspection techniques, as well as natural variabilities in transportation network resilience assessment.

3.1 Publications, conference papers, and presentations

Publications

TriDurLE Semi-Annual Progress Report 11 | Page

[38] D’Antino, T., Focacci, F., Sneed, L.H., Carloni, C. A Discussion of Differences between Single-lap Tests and Full-scale Beam Tests in Terms of FRCM-concrete Debonding, 10th International Conference on FRP Composites in Civil Engineering (CICE 2020), Istanbul 8-10 December 2021, paper accepted.

Technical Reports

Presentations

[11] [Presuel] Conference presentation during Corrosion/2021 Research in Progress symposium (Concrete and Architecture track)

3.2 Website(s) or other internet site(s)

SDSU Project Websites:
(1) Post-Earthquake Serviceability of RC Bridge Bents Using Visual Inspection
https://sites.google.com/people.unr.edu/mostafa-tazarv/research/post-event-serviceability
(2) Drone-Based Measurements for Bridge Field Testing,
https://sites.google.com/people.unr.edu/mostafa-tazarv/research/drone-based-measurement
(3) Repairable Precast Bridge Bents for Extreme Events
https://sites.google.com/people.unr.edu/mostafa-tazarv/research/repairable-bridge-bents

TriDurLE website: https://tridurle.wsu.edu

3.3 Technologies or techniques

A new software has been developed by Alabama A&M to implement the developed soil-pile model. The developed software package improves the designer’s capacity to assess the effect of inundating the collapsible soil and its negative impact on the performance of the pile foundations. Unlike current practice (FHWA’s procedure), the developed model couples the pile downdrag-settlement in the analytical process.

University of Utah has generated a software program in which corrosion of columns can be modeled using open source software to study the seismic performance of corroded columns constructed with accelerated bridge construction methods.

3.4 Inventions, patent applications, and/or licenses

Case Western Reserve University researchers have filed an invention disclosure with the university.

3.5 Other output

Nothing to report
4. OUTCOMES

4.1 Increased understanding and awareness of transportation issues

University of Utah’s collaborative project has allowed for an improved process to develop asphalt mixtures that are capable of balancing the need for mechanical performance and durability. This is referred to as balanced mix design. The project has also produced increases in the body of knowledge, improvement of existing techniques, practices, and technologies.

4.2 Passage of new policies, regulation, rulemaking, or legislation

Nothing to report

4.3 Increases in the body of knowledge

UC Denver’s work has had an impact on the students that are working on them in terms of providing an opportunity for research and the various research-related skill development. Work there is also finding research results that will make streets more accessible and equitable.

FAU research increased the body of knowledge on how corrosion propagation of the reinforcing steel takes place embedded in binary and ternary concrete.

WSU’s work has resulted in journal publications, scholarly presentations and patent applications, all of which not only increased the body of knowledge related to infrastructure durability but also contributed to student research experience, workforce development, and technology transfer.

CWRU results on fatigue behavior of FRM composites has focused on the fatigue at a stress level prior to the yielding of the internal bars. The results indicate that the FRM can increase the yielding point of the strengthened beam without being affected by the fatigue loading.

4.4 Improvement of existing techniques, practices, technologies

One of University of Utah’s projects has increased the body of knowledge, improvement of existing techniques, practices, and technologies.

Alabama A&M: The presented model allows assessing the axial response of piles subjected to downdrag by combining both the soil and pile settlement profiles with the mobilized side-friction and end-bearing load-transfer relationships. Current practice (FHWA) determines the neutral plane’s location solely based on the equilibrium of forces acting on the pile, while the pile settlement is calculated only using the soil settlement profile.

SDSU: Autonomous damage detection of bridge columns using the AI-based computer vision tool will significantly expedite the post-earthquake inspection and serviceability assessment of affected bridges. This technique is new for post-event bridge assessment, and the cloud-based inspection/assessment software is the first-of-its-kind tool developed for bridges.

University of Utah’s collaborative project has allowed for an improved process to develop asphalt mixtures that are capable of balancing the need for mechanical performance and durability. This is referred to as balanced mix design.
CWRU is improving the design of thermochromic materials into asphalt pavement will modulate the effects of climate on pavement durability and provides a new strategy to mitigate climate impacts and enhance the durability and life extension of pavement. Also, preliminary analyses of self-healing with microorganism demonstrate the promising potentials. The project team will continue to explore and advance the state of art.

4.5 **Enlargement of the pool of trained transportation professionals**

Nothing to report

4.6 **Incorporation of new techniques, practices, technologies**

Nothing to report

5. **IMPACTS**

5.1 **What is the impact on the development of the principal discipline(s) of the program?**

Alabama A&M’s current study improves the reliability of the pile foundation analysis in inundated collapsible soil due to the consideration of the developing negative skin friction (i.e. downdrag force) that acts on deep foundations, and the employment of such an interactive model that couples the induced downdrag forces with pile settlement. Such a model enhances the safety and serviceability of the bridge foundations.

5.2 **What is the impact on other disciplines?**

Nothing to report

5.3 **What is the impact on the development of transportation workforce development?**

An FAU ocean engineer PhD student graduated with experience in corrosion of reinforcing steel in concrete. Alabama A&M has developed software that will be available to DOT engineers to test and investigate its capabilities. A training session can be offered by the software developer.

5.4 **What is the impact on physical, institutional, and information resources at the university or other partner institutions?**

Nothing to report

5.5 **What is the impact on technology transfer?**

The WSU team’s two recent patent applications have obtained some interest from the private industry and there are ongoing technology transfer activities.

5.6 **What is the impact on society beyond science and technology?**

University of Colorado Denver projects seek to make streets more accessible and equitable, with the safe use of civil infrastructure as a primary interest.

The AI-based computer vision bridge serviceability assessment tool built by SDSU is expected to help the 16 seismic-prone states of the nation to quickly and safely evaluate affected bridges after earthquakes, which will save time, costs, and lives.
Alabama A&M’s current study improves the reliability of the pile foundation analysis in inundated collapsible soil due to the consideration of the developing negative skin friction (i.e. downdrag force) that acts on deep foundations, and the employment of such an interactive model that couples the induced downdrag forces with pile settlement. Such a model enhances the safety and serviceability of the bridge foundations.

6. CHANGES/PROBLEMS

6.1 Changes in approach and reasons for change

Nothing to report

6.2 Actual or anticipated problems or delays and actions or plans to resolve them

FAU reported that COVID issues delayed or made the accessing of facilities not as regular as the pre-COVID conditions. The medical condition on a graduate student required him to stop working in the project, a new graduate student was identified shortly after, and the learning curve slowed some of the sample monitoring. No changes to the project.

WSU reported that the project teams requested a no-cost extension mainly due to difficulties related to the arrival of international graduate students.

UU had multiple delays caused in the execution of the experiments for both goals 1 and 2 due to COVID-19. However, the schedule is back to normal and the team is expecting to catch up in the next reporting period.

Case Western Reserve University reports that new graduate students recruited for projects can’t arrive on campus due to COVID-19. The University policy does not allow them to work on the project outside US and get paid. These all had impacts on the implementation of the project activities.

6.3 Changes that have a significant impact on expenditures

Nothing to report

6.4 Significant change in use or care of animals, human subjects, and/or biohazards

Nothing to report

6.5 Changes of primary performance site location from that originally proposed

Nothing to report

6.6 Additional information regarding products and impacts

Nothing to report

7. SPECIAL REPORTING REQUIREMENTS

Nothing to report
APPENDIX A
Additional Performance Metrics

Table A1. Research Performance Metrics

<table>
<thead>
<tr>
<th>Name</th>
<th># of citations of UTC and projects on internet</th>
<th># of implemented strategies, products, patent applications or techniques</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAU</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>UC Denver</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>SDSU</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>University of Utah</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>MST</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Alabama A&M</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>WSU</td>
<td>75</td>
<td>2</td>
</tr>
</tbody>
</table>

Table A2. Leadership Performance Metrics

<table>
<thead>
<tr>
<th>Name</th>
<th>Junior faculty receiving seed grant awards</th>
<th>Online seminars offered to future leaders</th>
<th>States in which research or implementation is active</th>
<th>Hours of technical assistance offered</th>
<th>Significant awards</th>
<th>Researchers serving as expert panelists or selected for major leadership positions</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAU</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>UC Denver</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>SDSU</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>UU</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>12</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>MST</td>
<td>1</td>
<td>10</td>
<td>0</td>
<td>80</td>
<td>0</td>
<td>14</td>
</tr>
<tr>
<td>Alabama A&M</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>WSU</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>24</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Table A3. Education and Workforce Development Diversity Evaluation

<table>
<thead>
<tr>
<th>Name</th>
<th>#students funded by TriDurLE and ethnicity</th>
<th># supported students receiving degrees and ethnicity</th>
<th># attendees at training sessions, ethnicity and affiliation</th>
<th># of online course or webinar attendees</th>
<th># of student participants in career-building activities and ethnicity</th>
<th># of attendees in K-12 programs</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAU</td>
<td>1 Hispanic, 1 white</td>
<td>1 Hispanic, 1 white</td>
<td>3 Hispanic, 3 female, 6 white male</td>
<td>0</td>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td>UCD</td>
<td>1 non-Hispanic, 1 white, 1 Arabic</td>
<td>1 non-Hispanic white</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SDSU</td>
<td>2 white, 1 female Asian, 1 Italian, 1 Eastern Indian</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>UU</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>WSU</td>
<td>1 female Indian 4 Asians 1 African American</td>
<td>4 Asians</td>
<td>100+</td>
<td>14</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MST</td>
<td>1 female</td>
<td>3 Asian</td>
<td>1 MS and 1 PhD, both Asian</td>
<td>200+</td>
<td>500+</td>
<td>NA</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
<td>---------</td>
<td>---------------------------</td>
<td>------</td>
<td>------</td>
<td>----</td>
</tr>
<tr>
<td>Alabama A&M</td>
<td>2 white males, 1 Asian female, 1 Italian male, 1 Indian male</td>
<td>2 white males, 1 Asian female, 1 Italian male</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

APPENDIX B

Year 2 Research Projects

Table B1. Year 2 research projects

<table>
<thead>
<tr>
<th>Research Project</th>
<th>PIs and Co-PIs</th>
<th>University</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Using Deep Learning for Accurate Detection of Bridge Performance Anomalies</td>
<td>Farnoush Banaei-Kashani, Chris Pantelides</td>
<td>University of Colorado Denver, University of Utah</td>
</tr>
<tr>
<td>2 Design of Fly Ash-based Geopolymer Concrete-filled FRP Tube Composite for Highly Durable and Environmentally Friendly Infrastructure</td>
<td>Xianming Shi</td>
<td>Washington State University</td>
</tr>
<tr>
<td>3 Developing High-performance Nanocomposite Coating for Steel Reinforcement Protection in Chloride-rich Concrete</td>
<td>Xianming Shi</td>
<td>Washington State University</td>
</tr>
<tr>
<td>4 Development of Microcapsule-based Self-healing, High-strength Engineered Cementitious Composites (SHHS-EE)</td>
<td>Xianming Shi, Liang Fan</td>
<td>Washington State University</td>
</tr>
<tr>
<td>5 Sustainable nHPC Mixtures for Durable Overlay of Concrete Bridge Decks in Cold Regions: Proof of Concept</td>
<td>Xianming Shi</td>
<td>Washington State University</td>
</tr>
<tr>
<td>6 Development of Stormwater Detention/Infiltration System for Urban Highways Using Permeable Light-weight Cellular Concrete, Phase I</td>
<td>Steven Bartlett, Nigel Bruce Pickering</td>
<td>University of Utah, Washington State University</td>
</tr>
<tr>
<td>7 Preparation of Pavement Infrastructure for Connected and Autonomous Vehicle Deployment – Phase I</td>
<td>Xianbiao Hu, Jenny Liu</td>
<td>Missouri University of Science & Technology</td>
</tr>
<tr>
<td>8 Drone-based Measurements for Bridge Field Testing</td>
<td>Mostafa Tazarv, Marco Ciarcia, Kwanghee Won</td>
<td>South Dakota State University</td>
</tr>
<tr>
<td>9 Development of Holistic Methodologies for Improving Asphalt Mix Durability (Yr. 2)</td>
<td>Jenny Liu, Pedro Romero, Fujie Zhou</td>
<td>Missouri S&T, University of Utah, Texas A&M University</td>
</tr>
<tr>
<td>10 Performance of ABC Columns Cost-effective Retrofit Strategies Subjected to Synergistic Distress Resulting from Corrosion and Seismic Loading (Yr 2)</td>
<td>Yail Jimmy Kim, Chris Pantelides</td>
<td>University of Colorado Denver, University of Utah</td>
</tr>
<tr>
<td>11 Seismic Performance and Fragility of Retrofitted Reinforced Concrete Bridge Columns to Long-duration Earthquakes</td>
<td>Adam Phillips, Chris Motter</td>
<td>Washington State University</td>
</tr>
<tr>
<td>12 Assessment and Evaluation of Post-liquefaction Lateral Spread Impact on Bridge Deep Foundations</td>
<td>Mohamad Ashour, Sudip Bhattacharjee</td>
<td>Alabama A&M University</td>
</tr>
<tr>
<td>13 Use of Recycled Plastics in Asphalt Pavement (Yr 2)</td>
<td>Jenny Liu, Xinhua Liang</td>
<td>Missouri S&T</td>
</tr>
<tr>
<td>14 AI-based Prediction Models for Transportation Infrastructure Asset Management Data Hub – Phase I</td>
<td>Xianbiao Hu, Jenny Liu</td>
<td>Missouri S&T</td>
</tr>
<tr>
<td>Page</td>
<td>Title</td>
<td>Authors</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>15</td>
<td>Effects of Combined Carbonate and Biofilm on Shrinkage Cracking in Unsaturated Cementitiously Stabilized Soils Using Microcapsules</td>
<td>Xianming Shi</td>
</tr>
<tr>
<td>16</td>
<td>Repairable Precast Bridge Bents for Extreme Events</td>
<td>Mostafa Tazarv</td>
</tr>
<tr>
<td>17</td>
<td>UAV-enabled Structure-From-Motion Photogrammetry for Bridge Crack Detection and Characterization</td>
<td>Xiong Zhang, Jenny Liu, Genda Chen</td>
</tr>
<tr>
<td>18</td>
<td>A Multiple-camera System to Determine the Absolute Volume of Soil Specimen During Dynamic Triaxial Testing (Yr 1)</td>
<td>Xiong Zhang, Jenny Liu</td>
</tr>
<tr>
<td>19</td>
<td>The (In)Equitable Distribution of Quality Bicycling Infrastructure</td>
<td>Wesley Marshall, Nicholas Ferenchak</td>
</tr>
<tr>
<td>20</td>
<td>Durability of Transverse Sawcut Joints in Midwestern Jointed Concrete Pavements</td>
<td>Dan Zollinger, Jenny Liu</td>
</tr>
<tr>
<td>21</td>
<td>Development of Infrastructure Research Weekly APP</td>
<td>Xianming Shi, Kakan Dey</td>
</tr>
<tr>
<td>22</td>
<td>Developing Enhanced Performance Curves of ITD Asphalt Pavements by Mining the Historical Data</td>
<td>Xianming Shi</td>
</tr>
<tr>
<td>23</td>
<td>Comparing the Performances of Different Wicking Fibers for Water Removal for Transportation Applications</td>
<td>Xiong Zhang, Xinhua Liang</td>
</tr>
<tr>
<td>24</td>
<td>Corrosion Propagation Monitoring Legacy Samples and Forensic Analysis on Selected Sample</td>
<td>Francisco Moreno-Presuel</td>
</tr>
<tr>
<td>25</td>
<td>Poro-Elastic Modeling and Measurement of Rebar Corrosion and Crack Formation Using High Frequency Ultrasonics</td>
<td>Pierre-Phillipe Beaujean</td>
</tr>
</tbody>
</table>