History, Evolution, and Future of the Substation RTU

Mark Peterson, PE
GE Technical Application Engineer

Power & Energy Conference - 2020
Biggest Machine on Earth

America’s Power System:

- 10,000 power plants
- Half a million miles of transmission
- Millions of miles of distribution
- 55,000 substations
Biggest Machine on Earth

The goal is to optimize the power production and delivery process.

The collection, secure transfer, and analysis of end-to-end system information is required in order to achieve that goal.
SCADA

- Supervisory Control and Data Acquisition

- Purpose of SCADA
 - Process optimization
 - System situational awareness
 - System control
 - Without it, essentially running blind, must rely upon:
 - Dispatched workers
 - Staffed substations
 - Phone call reporting
Healthcare Analogy

Monitor: Critical Real Time Data

Frequency: Constant/Short Interval

Actions: Immediate

Goal: Keep Patient Alive

Emergency Room
Power Production/Delivery System

Energy Management System

Monitor: Critical Real Time Data

Frequency: Constant/Short Interval

Actions: Immediate

Goal: Keep System Alive and Operational
SCADA History (Early to Mid 1900’s)

• Power plant control rooms were first “control centers”
 – Extended to nearby substations for SCADA functionality
 – Directly-connected data sources
 – Device contacts
 – Electromechanical meters
 – Transducers
SCADA History (Early to Mid 1900’s)

- Power plant control rooms were first “control centers”
 - Essentially extended instrumentation
 - Dedicated discrete data indication and display board
 - Meters
 - Lamps
SCADA History (Early to Mid 1900’s)

- Extended instrumentation impractical for distant stations
- Alternative manual methods
 - Staffed stations
 - On-call local area workers
 - Public
- Progressive application of telemetry
 - Simple schemes
 - Limited to crucial data
SCADA History (1960’s -1970’s)

- SCADA acronym came into use
- Early implementation
 - Field devices, predominantly at subs
 - Remote Data Equipment (RDE)
 - Standalone, independent
 - Dedicated function
 - Perform data acquisition
 - Execute control actions
SCADA History (1960’s - 1970’s)

• Remote Data Equipment (RDE)
 – Hardware
 – Discrete electronics
 – Hardware based logic
 – Often wire-wound connections
 – Multiple large low-density PCBs
 – Common card-cage format
SCADA History (1960’s - 1970’s)

• Hard IO
 – Card based
 – Local to RDE
 – Low-level analog inputs (AIs)
 – Typically +/- 1mA transducer
 – Status inputs (DIs)
 – Typically equipment contacts
 – Control outputs (DOs)
SCADA History (1960’s - 1970’s)
SCADA History (1960’s -1970’s)

- Energy Management System (EMS) master
 - Computer / data processor
 - Communications processor
 - Communication with system devices
 - Protocol / language
 - Simple limited interface
 - Modifiable display board
 - Highly dependent on local area workers
SCADA History (1960’s -1970’s)

• Communications
 – Protocol / language
 – Move data
 – Typically poll-response scheme
 – Optimize bandwidth usage
 – Minimize impact on processor and memory

 – Typically RDE and Master sourced from common vendor and utilized proprietary vendor-specific protocol, e.g. Conitel, CDC, Telegyr
 – Near zero concern for interoperability
 – Bit and byte orientations
 – Often hardware-associated
SCADA History (1960’s - 1970’s)

- Often hardware-associated
 - Message segments match hardware I/O cards
 - e.g. Leeds & Northrup RDE – Conitel protocol

<table>
<thead>
<tr>
<th>MSB</th>
<th>INFORMATION SECTION A</th>
<th>A</th>
<th>INFORMATION SECTION B</th>
<th>B</th>
<th>BCH</th>
<th>EOM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>13</td>
<td></td>
<td>26</td>
<td>27-31</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14</td>
<td></td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td></td>
<td>26</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>25</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SCADA History (1960’s - 1970’s)

- Communications Media
 - 4-wire leased party phone lines
 - Microwave
 - Radios
 - Typically FSK via 1200 baud modem
SCADA History (1980’s - 1990’s)

- Remote Terminal Unit (RTU)
 - Microprocessor based
 - Firmware based logic and processing
 - Implement advanced functionality
 - PLC, multiple master support, calculator, etc.
 - Communications to Master
 - Leased phone lines
 - Microwave
 - Radio, licensed and spread spectrum
 - Fiber, mostly multiplexed serial channels
SCADA History (1980’s - 1990’s)

- IO
 - Predominantly local hard IO
 - Distributed IO for large stations

- Utilize data in IEDs
 - Meters
 - Relays
 - Controls (e.g. LTC, regulator, etc.)

- Communications media to IEDs:
 - RS232 serial
 - RS485 serial
 - Some fiber serial
 - Some Ethernet, copper and fiber
SCADA History (1980’s - 1990’s)

- Communication Protocols
 - Vendors started to emulate other vendors’ protocols
 - Eliminated vendor hardware limitations
 - Increased competition
 - Westronic created DNP protocol
 - Interoperable
 - Critical need for RTU-to-IED comms
 - Publicly released to DNP Users Group
 - Industry game changer
SCADA History (1980’s -1990’s)

• **Energy Management System (EMS) master**
 – Increased processor and memory
 – More remote stations monitored
 – **Advanced Graphical User Interface (GUI) display board**
 – CRT
 – Projection
SCADA Recent Evolution (00’s-Present)

- Energy Management System (EMS) master
 - Many continued to utilize vendor-specific protocols
 - Progressively implemented DNP
 - Implemented advanced functionality
 - Load control
 - State estimators
SCADA Recent Evolution (00’s-Present)

• Energy Management System (EMS) master
 – GUI
SCADA Recent Evolution

- Remote Terminal Unit (RTU)
 - Moved toward substation Gateway design/concept
 - Hard IO agnostic - Use IED data or 3rd party IO modules
 - Data primarily sourced from IEDs
 - Operational real time data
 - Classic status and analog values
 - Non-operational data
 - Events
 - Logs
 - Communications media
 - Move to more Ethernet – copper and fiber
SCADA Recent Evolution

- Substation Gateway
SCADA Recent Evolution

- Substation Gateway
 - Communications Protocols
 - Evolution of interoperable protocols
 - DNP additions
 - UCA evolution to, and development of IEC 61850
 - Specifies how data shall be moved
 - Manufacturing Message Specification (MMS)
 - Client/Server scheme
 - Generic Object Oriented Substation Event (GOOSE)
 - Publisher/Subscriber scheme
SCADA Recent Evolution

• Substation Gateway

 – Communications
 – Drastic reduction in bandwidth constraints
 – Serial: 1200 baud to 56 kbaud channels
 – LAN: 1MB to 1GB
 – Frame relay, SONET, MPLS, etc.
 – Drastic reduction of communication costs
 – Standards such as Ethernet and TCP/IP
 – Explosion of communications market
 – Advances in hardware capabilities
SCADA Recent Evolution

- Multiple Functions on Common Platform

Advanced Gateway
Data collection from substation IEDs for control & secure monitoring

Advanced Automation
Automate substation procedures using IEC 61131 compliant tools

Fault Recording & Data Logging and File Retrieval
Extract valuable data such as digital fault records and event files

Embedded HMI
Customizable local or remote HMI with multiple windows

Secure Remote Access
Securely access substation device locally and remotely

Redundancy
Hot & Warm-standby, PRP and HSR
SCADA Future

- Impacts of technology
 - Wide variety of communications technologies available
 - Bandwidth costs no longer the driver they used to be
 - Greater system and device intelligence and need for situational awareness requires:
 - More points to be monitored and reported
 - More data to be obtained and processed
 - Increased complexity in applications
 - Focus is shifting from data acquisition to data management
SCADA Future

• Focus shifting from data acquisition to data management

 – Manage huge amounts of data and datasets
 – Configuration of devices and applications
 – Maintenance of devices and applications
 – Updating devices
 – Securing devices and configurations

 – These will be the main cost drivers
SCADA Future

• Impacts of technology
 – Application of data analysis tools
 – Process boatloads of data into information
 – Mine data for useful information
 – Efficient reporting of data to those who need it
SCADA Future

• Data Management
 – Higher commissioning costs
 – More applications accessing data
 – Deregulation adds complexity due to increased sharing
SCADA Future

• Traditional SCADA data management
 – Goal was to move points with minimal overhead
 – Meanings of points maintained in multiple places
 – Configuration of RTU and IEDs
 – Configuration of databases
 – Configuration of applications
 – Protocols were primarily register based
SCADA Future

- Traditional SCADA data management
 - Validation is costly and time consuming
 - e.g. Move point 3851 from source to multiple destinations
 - People need to manage and validate that point
 - Expensive effort
SCADA Future

• Communication and Data Management Trends
 – Industries moving toward Object-Oriented protocols
 – Data organized by function
 – Simplifies distributed applications and their management
 – Standardized objects for interoperability
 – Self-description and Meta-Data allow for online validation
 – Objects aren’t just bytes of data but also descriptions
 – Bandwidth is the tradeoff
 – Connecting applications to data is bigger effort/obstacle than the bandwidth to move it
SCADA Future

- Modern Object-Oriented Protocols

 - Goal: Reduce data management while maintaining high integrity and reliability
 - IEC 61850 standard objectives
 - Address data management costs via modern communication techniques
 - High degree of interoperability via standard objects
 - Simplify config effort via common config language
 - On-line validation of comm via Meta-Data and self-description
SCADA Future

• Scope of IEC 61850
 – Much broader than traditional protocols
 – Multiple protocols
 – GOOSE, MMS, Sampled values
 – Standardized configuration language
 – SCL - Substation Configuration Language
 – XML - Extensible Markup Language
 – Standard and extensible objects
 – Naming
 – Data types
SCADA Future

```xml
<?xml version="1.0"?>
  <Header id="GE" version="0" revision="1" toolID="DAPStudio" nameStructure="IEDName" />
  <Communication>
    <SubNetwork name="IOLAN">
      <ConnectedAP iedName="IED9" apName="AccessPoint5">
        <Address>
          <P type="IP">0.0.0.0</P>
          <P type="IP-SUBNET">255.255.255.0</P>
          <P type="IP-GATEWAY">0.0.0.0</P>
        </Address>
      </ConnectedAP>
    </SubNetwork>
  </Communication>
  <IED name="IED9">
    <AccessPoint name="AccessPoint5" router="false" clock="false">
      <Server timeout="30">
        <Authentication none="true" password="false" weak="false" strong="false" certificate="false" />
        <LDevice inst="TransfixA">
          <LN0 lnType="DAP_LLNO" lnClass="LLNO" inst=""/>
          <DataSet name="DataSet1">
            <FCDA ldInst="TransfixA" prefix="" lnClass="SIML" lnInst="1" doName="Tmp" fc="MX"/>
            <FCDA ldInst="TransfixA" prefix="" lnClass="SIML" lnInst="1" doName="H2O" fc="MX"/>
            <FCDA ldInst="TransfixA" prefix="" lnClass="SIML" lnInst="1" doName="H2ppm" fc="MX"/>
            <FCDA ldInst="TransfixA" prefix="" lnClass="SIML" lnInst="1" doName="N2ppm" fc="MX"/>
            <FCDA ldInst="TransfixA" prefix="" lnClass="SIML" lnInst="1" doName="COppm" fc="MX"/>
            <FCDA ldInst="TransfixA" prefix="" lnClass="SIML" lnInst="1" doName="CO2ppm" fc="MX"/>
            <FCDA ldInst="TransfixA" prefix="" lnClass="SIML" lnInst="1" doName="CH4ppm" fc="MX"/>
            <FCDA ldInst="TransfixA" prefix="" lnClass="SIML" lnInst="1" doName="C2H2ppm" fc="MX"/>
            <FCDA ldInst="TransfixA" prefix="" lnClass="SIML" lnInst="1" doName="C2H4ppm" fc="MX"/>
            <FCDA ldInst="TransfixA" prefix="" lnClass="SIML" lnInst="1" doName="C2H6ppm" fc="MX"/>
            <FCDA ldInst="TransfixA" prefix="" lnClass="SIML" lnInst="1" doName="O2ppm" fc="MX"/>
            <FCDA ldInst="TransfixA" prefix="" lnClass="SIML" lnInst="1" doName="CmbuGas" fc="MX"/>
            <FCDA ldInst="TransfixA" prefix="" lnClass="SIML" lnInst="2" doName="Tmp" fc="MX"/>
            <FCDA ldInst="TransfixA" prefix="" lnClass="SIML" lnInst="2" doName="H2O" fc="MX"/>
          </DataSet>
        </LDevice>
      </Server>
    </AccessPoint>
  </IED>
</SCL>
```
SCADA Future

- **Gateway Evolution**
 - Advanced Functionality
 - Time synchronization and distribution: IRIG-B, SNTP, PRP
 - Programmable logic
 - Non-operational file gathering and reporting

- **Processing platform**
 - Virtual machines
 - Multiple OS environment
 - Container based technology
SCADA Future

- Security
 - Secure perimeter access point and gateway
 - Authentication, authorization, and audit trails
 - Password management
 - Firmware management
 - Remote tunneling (pass-through) connection to IEDs
 - Automated retrieval and reporting
Summary

• Substation RTU
 – Moving toward multifunction gateway platform

• Substation Data
 – Volume will increase, primarily non-operational data
 – Efficient, reliable, and secure management of data will be main objectives
Summary

• Communications
 – Industry is moving toward object-oriented communications and protocols
 – Interoperability, validation, self-identification will be key objectives

• Cybersecurity
 – Critical infrastructure protection will be crucial focus
 – Authentication, authorization, and audit trails
 – Compliance with mandates from governing bodies