

Advanced Hardwood Biofuels Northwest

Growers manual and other poplar resources

Nora Haider

Advanced Hardwood Biofuels Northwest

ABOUT

PROJECTS

AUDIENCES

NEWS AND EVENTS

RESOURCES

COLLABORATORS

AHB Feedstock

AHB Conversion

AHB Sustainability

AHB Education

AHB Extension

Advanced Hardwood Biofuels Northwest (AHB) is researching and developing ways to grow and convert hybrid poplars into bio-based chemicals and liquid biofuels.

INFORMATION for Educators k-12

INFORMACIÓN para En español

Poplar Grower's Manual

Advanced Hardwood Biofuels Northwest

A Grower's Guide to Short-Rotation Hybrid Poplar as a Bioenergy Crop in the Pacific Northwest

Contents

- I. Introduction
- II. Essentials of Poplar Biology
- III. Site Selection
- IV. Site Prep and Establishment
- V. Weed Management
- VI. Pests Management
- VII. Disease Management
- VIII. Water and Nutrient Management
- IX. Harvest and Coppicing
- X. Biomass Growth and Yield
- XI. Re-establishment
- XII. Production Economics
- XIII. Sustainability
- XIV. Glossary

Poplar Pests

- Identification
- Best Management
 Practices specific to poplars
- Extension factsheets

Western Poplar Clearwing Moth

Poplar-Willow borer

Poplar Disease

- Descriptions
- Treatment information
- AHB endophyte research

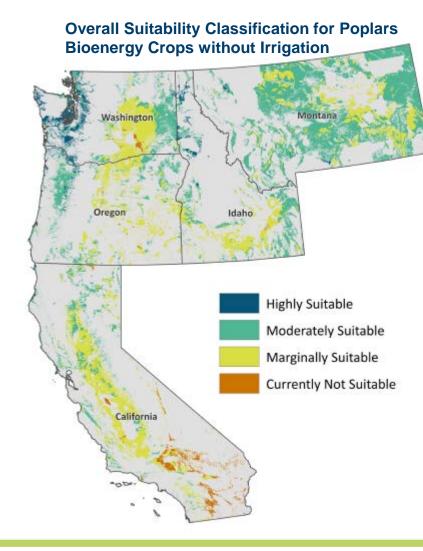
Leaf rust (Melampsora)

Leaf blight of Septoria (Septoria populicola)

Site Selection

Soil quality	Optimal	Marginal	Unsuitable
		Sandy clay,	
	Sand loam –	sandy loam,	
Texture	clay loam	silty loam	Clay
		4.5 – 5.5 pH	< 4.5 pH
рН	5.5 – 7.5 pH	7.5 – 8.0 pH	> 8.0 pH
Salinity	0 – 2 dS/m	2 - 4 dS/m	> 5 dS/m
Depth	> 40 inches	20 -40 inches	< 20 inches

Soil Depth to Water Table				
Unsuitable – too	Marginal shallow	Ideal	Marginal deep	
shallow				
< 20 inches	20 - 40 inches	40 - 100 inches	> 100 inches	


Precipitation Suitability Ranges					
Average monthly precipitation (in) from April to September.					
Unsuitable - Too dry	Marginal dry	Ideal			
0 -1 inches	1-2 inches	≥ 2 inches			

Other Factors to Consider:

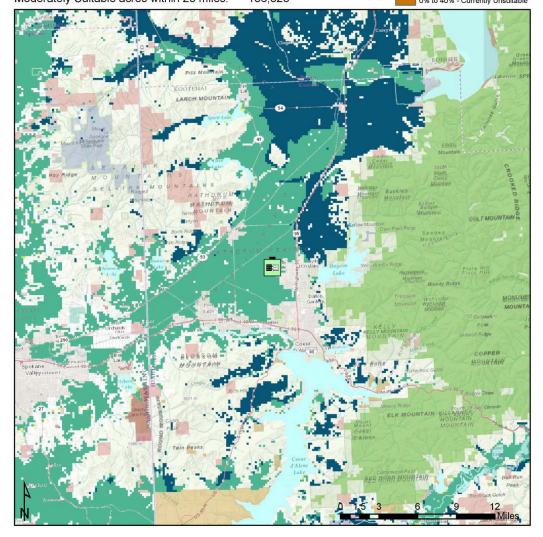
- Nutrients
- Slope
- Surface rocks

Field size

- Proximity to markets
- Growing season length
- Climate

Land Suitability Study

Hayden
Highly Suitable acres within 20 miles:


Highly Suitable acres within 20 miles: 99,384

Moderately Suitable acres within 20 miles: 136,323

60% to 80% - Moderately Suitable
40% to 60% - Marginally Suitable
0% to 40% - Currently Unsuitable

Suitability without Irrigation

80% to 100% - Highly Suitable

Site Establishment

- Field layout
- Site prep
- Clone selection
- Planting

