Multiple Acaricide resistance of the two-spotted spider mite in hop fields

Adekunle Adesanya, Meixiang Wu, Doug Walsh, Laura Lavine and Fang (Rose) Zhu
Department of Entomology, Washington State University, 99164 WA

Abstract

Background: The two-spotted spider mite (TSSM) is a key pest of hop, especially in the Pacific Northwest USA. Management of TSSM on hop is mainly by the application/rotation of different chemistries of acaricides. However, TSSM have developed resistance to these acaricides, leading to control failures and losses. Here, we evaluated resistance status of PNW hop TSSM populations to three acaricides: etoxazole, fenpyroximate, and spirodiclofen by enhanced metabolic detoxification was detected in 100%, 50%, and 20% of populations tested. Resistance-associated mutations were detected across target genes; I1017F in chinin synthase 1 gene, G1285S in cytochrome b, and M918L, F1534S and F1538I in the voltage-gated sodium channel gene, with these mutations occurring in 97, 85.7, 25, 28, and 83% of the tested population respectively.

Conclusion: Our study provides new information in understanding the complexity of TSSM adaptation to multiple acaricides, which will help in designing sustainable pest control strategies for TSSM on hops and other economic crops.

Results: Resistance to abamectin, fenpyroximate, and spirodiclofen by enhanced metabolic detoxification was detected in 100%, 50%, and 20% of populations tested. Resistance-associated mutations were detected across target genes; I1017F in chinin synthase 1 gene, G1285S in cytochrome b, and M918L, F1534S and F1538I in the voltage-gated sodium channel gene, with these mutations occurring in 97, 85.7, 25, 28, and 83% of the tested population respectively.

In order to design the most effective and sustainable TSSM management strategy, this study is aimed at:

Knowing the resistant status of TSSM populations on PNW hops to 3 widely used acaricides with different mode of actions i.e. etoxazole, fenpyroximate and spirodiclofen.

In order to design the most effective and sustainable TSSM management strategy, this study is aimed at:

Knowing the resistant status of TSSM populations on PNW hops to 3 widely used acaricides with different mode of actions i.e. etoxazole, fenpyroximate and spirodiclofen.

Evaluation of Resistance-Associated Target Site Mutations: the presence of mutations across 7 acaricide target genes in hop TSSM were evaluated.

Mutation in chinin synthase 1 gene (I1017F): 5.4% of the TSSM populations had susceptible allele(1), while 89.2% had heterozygous allele (IF). Interestingly, 5.4% of the population had resistant allele (F) fixed i.e. homozygous resistant allele. Indicating target insensitivity is responsible for the observed phenotypic resistance to MGIs like etoxazole.

Bifenazate (METI class II): 5 mutations that are associated with bifenazate resistance in the mitochondrial cytochrome b (Cyt b) gene were assessed, but only the G1265S mutation was detected in 90% of the population which all had the heterozygous allele (CS).

Spirodiclofen (LPI) resistance: Bifenazate resistance in TSSM populations.** P<0.01 * P<0.05 (Resistance/Susceptible≥2 fold)

Outcome and Significance of Study

Narrow-spectrum and reduced-risk acaricides are cardinal tools for sustainable TSSM management in most cropping systems. To remain IPM-compatible as long as possible, it is necessary to develop a comprehensive strategy to frequently examine the phenotypic resistance status and underlying mechanisms of adaptation to acaricides in field populations. This study shows that populations of TSSM on hops in the PNW harbor multiple acaricide-resistant phenotypes and genotypes. This pattern and level of resistance reflects the frequency of use of acaricides and their mode of action.

There was significant variation in the level of phenotypic and genotypic resistance across the hop TSSM populations. This might be a result of differences in factors such as individual grower practices.

Our data revealed a unique acaricide adaptation pattern for six commonly used acaricide in PNW hopyards. Resistance to abamectin, fenpyroximate, and spirodiclofen was by enhanced metabolic detoxification. While, target site insensitivity conferred resistance to bifenthrin, bifenazate and etoxazole was observed in a wide range of hop TSSM populations. The resistant alleles present in TSSM populations on hops should be taken into consideration in the adoption of new chemistries of acaricides and in the design of future IPM programs.

The approach and findings in this study are also extendible to other cropping systems, especially in pesticide management programs.

Acknowledgment and References

This work was supported by funding from the Hop Research Council, WCPR, USDA-SCRI grant for IPM on Hop. Thanks to members of the Walsh’s lab for assistance.

3. van Leeuwen et al., 2012, PNAS
4. van Leeuwen et al., 2015, Pesticide Physiology and Biochemistry.

Expression Pattern of Resistance-Associated Metabolic Genes

Molecular analysis of spirodiclofen resistance in TSSM indicate a P450, CYP392E10 and a carboxy/oxide esterase-4 CCE04 gene are strongly associated with high levels of resistance to spirodiclofen (Figure below). These two genes can be used as molecular markers to screen for spirodiclofen resistance. Gene expression of 2 P450s i.e. CYP392A11, and CYP392A16 that have been functionally studied to metabolize fenpyroximate and abamectin respectively were significantly overexpressed (>2 fold) in TSSM populations from PNW hops. TuGSTd10, TuGSTd14 and TuGSTm09 that are involved in resistance to abamectin was also highly expressed. Thus suggesting polygenic resistance in hop TSSM. TuGSTd05 which confer resistance to METI class II acaricides was over expressed in some of the hop TSSM populations.

Introduction

Humulus lupulus (hops) is a specialty crop that is cultivated mainly for its oils used in flavoring of craft beer. The US hop industry is worth $500 million with key production areas in three Pacific Northwestern (PNW) states (Washington, Oregon and Idaho), which make up over 90% of the US and 30% of the world’s hop acreage in 2015.

Successful cultivation of hops in PNW can be hindered by TSSM infestation.

Etoxazole (Mite Growth Inhibitor), fenpyroximate (Mitochondrion Electron Transport Inhibitor) and spirodiclofen (Lipid Biosynthesis Inhibitor) are major TSSM management tools on hops based on farmers spray records. The use of these narrow-spectrum acaricides to reduce the ecological side-effects of earlier generations of broad-spectrum acaricides has resulted in increased rates of development of resistance.

Hence, it is important to know if populations of TSSM on hops harbor multiple resistant phenotypes and genotypes.

Research Goal and Objective

In order to design the most effective and sustainable TSSM management strategy, this study is aimed at:

1. Knowing the resistant status of TSSM populations on PNW hops to 3 widely used acaricides with different mode of actions i.e. etoxazole, fenpyroximate and spirodiclofen.

2. Understanding the underlying mechanisms of resistance; target-site mutations and metabolic resistance to these acaricides.

Experimental Set-up (Methodology)

TSSM populations (36 in total) were collected from hop farms in 6 main districts of Yakima, Washington State (Harrah, Mabton, Moxee, Prosser, Toppenish and White Swan) and subjected to dose-mortality test with acaricides (etoxazole, fenpyroximate and spirodiclofen). The corresponding LC50 value of each population was compared to that of a susceptible TSSM strain to compute a resistant ratio (RR). Genomic DNA and RNA were extracted from TSSM populations to characterize their resistant phenotypes by diagnostic PCR and qRT-PCR respectively.

Phenotype Characterization

Precision spray of acaricides

Levels of resistant phenotypes

RR < 2 susceptible

2 < RR < 10 Low Resistance

10 < RR < 100 Moderate Resistance

RR > 100 High Resistance

Genotype Characterization

Diagnostic PCR for resistance-associated mutations

Genotypic analysis

Preparation of DNA

Design primers around mutation region on gDNA

Perform PCR to measure mRNA expression of resistant-associated metabolic genes i.e. cytochrome P450, glutathione-S transferase and carboxylesterases

qRT-PCR to measure mRNA expression of resistance-associated mutations

Extract gDNA

Prepare qRT-PCR to measure mRNA expression

Extract total RNA

Synthesize cDNA

qRT-PCR to measure mRNA expression

Amplify mutation region

Sanger sequencing of amplicon

Examine presence of mutation

Results

Acaricide Spray Model at Hopyards: Several acaricides with different modes of actions were applied for the control of TSSM on PNW hops based on the spray records obtained from hop growers in the PNW (Figures below).

Acaricide Resistance Levels in TSSM Field Populations on hops: the toxocities of registered acaricides i.e. etoxazole(MGI), fenpyroximate (METI) and spirodiclofen (LPI) for TSSM control, were assessed on 31, 28, and 21 hop TSSM populations respectively.

Evaluation of Resistance-Associated Target Site Mutations: the presence of mutations across 7 acaricide target genes in hop TSSM were evaluated.

Mutation in Chitin synthase 1 gene (I1017F): 5.4% of the TSSM populations had susceptible allele(1), while 89.2% had heterozygous allele (IF). Interestingly, 5.4% of the population had resistant allele (F) fixed i.e. homozygous resistant allele. Indicating target insensitivity is responsible for the observed phenotypic resistance to MGIs like etoxazole.

Bifenazate (METI class II): 5 mutations that are associated with bifenazate resistance in the mitochondrial cytochrome b (Cyt b) gene were assessed, but only the G1265S mutation was detected in 90% of the population which all had the heterozygous allele (CS).

Spirodiclofen (LPI) resistance: Bifenazate resistance in TSSM populations.** P<0.01 * P<0.05 (Resistance/Susceptible≥2 fold)