Where can the greatest economic value of genomic testing be found?

Albert De Vries

Department of Animal Sciences University of Florida Gainesville, FL 32611 devries@ufl.edu

Dairy Genomics Workshop, Twin Falls, Idaho. October 8, 2018

Acknowledgments

- Dairy farmers
- Allied industry
- University/USDA colleagues, students
- My wife and daughters
- Funding:

United States Department of Agriculture National Institute of Food and Agriculture

This work is financially supported by USDA-NIFA AFRI grant award 2013-68004-20365 titled "Improving Fertility of Dairy Cattle Using Translational Genomics".

Overview

- 1. Concepts, simpler analysis
- 2. Make more dairy heifer calves than needed?
- 3. Use beef semen to sell crossbred calves?
- 4. Other considerations
- 5. Take home messages

How much is +\$52 PTA NM\$ worth?

- +\$52 predicted transmitting ability / life time
- = +\$104 estimated breeding value / life time (= 3 years)
- = +\$34 estimated breeding value / year

Keeping the best 80% of heifers increases the genetic level of the herd by \$34/cow/year (but culling, discounting makes final value a little lower)

Genetic progress in the population

Breeders equation

Natural genetic differences

Genetic progress = genetic variation x
selection intensity x √(reliability of info)

How picky we can be

How good the ranking is:

- Pedigree info.
- Genomic test info.
- Genetic progress per year = genetic progress between generations / generation interval

Assumed reliability values for predictions of Lifetime Net Merit based on pedigree, performance, and low-density genotyping data ("Traditional" = no DNA testing, "Genomic" = DNA testing with 3K chip) for simulated animals in each age group.

	Ancestry Unknown		Sire-Identified		Full Pedigree	
Age Group	Traditional	Genomic	Traditional	Genomic	Traditional	Genomic
Heifer calves	0.00	0.50	0.20	0.57	0.34	0.67
Yearling Heifers	0.00	0.52	0.21	0.59	0.35	0.68
1st Lactation Cows	0.18	0.56	0.40	0.63	0.52	0.71
2nd Lactation Cows	0.22	0.59	0.44	0.66	0.55	0.73
3rd Lactation Cows	0.25	0.62	0.46	0.68	0.57	0.74
4th Lactation Cows	0.27	0.64	0.48	0.69	0.58	0.74
5th Lactation Cows	0.29	0.65	0.49	0.70	0.59	0.75
6th Lactation Cows	0.30	0.65	0.50	0.70	0.60	0.75

Reliabilities based on unselected population

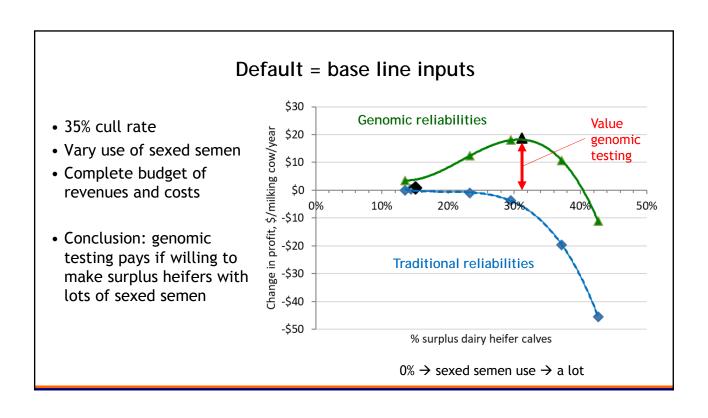
Dr. Kent Weigel UW (2011)

2. Make more dairy heifer calves than needed?

- Use sexed semen
- Higher selection intensity
- Greater selection gain
- Other advantages dairy calves

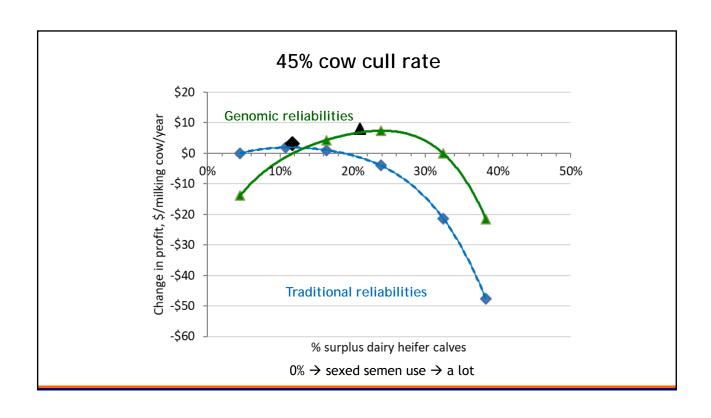
Which animals benefit from genomic testing?

- Selected animal (calf) herself
- Daughters, due to animal selection
- Daughters, due to animal's selective mating
- (Future generations)


Herd budget model

Genetics, phenotype, prices, ...

Bottom line: Profit per milking cow per year



3. Use beef semen to sell crossbred calves?

- Sell crossbred calves at a premium
- Use low genetic dams with beef semen
- Use high genetic dams to make dairy heifer calves
- Reduces selection intensity of dairy heifer calves

"Simple" math: all sexed vs. some beef semen

	100% sexed dairy semen			70% sexed semen and 30% beef semen				
	total	per calf	#calves		#calves	per calf	total	
			159	total calves born	159			
	\$2,400	\$24	100	Δ genetics kept heifers	100	\$0	\$0	
			30%	surplus heifer calves	0%			
	\$2,143	\$50	43	sold heifer calves	0	\$50	\$0	
			143	total heifer calves	100			
	\$794	\$50	16	sold dairy bull calves	11	\$50	\$556	
_	\$0	\$125	0	sold crossbred calves	48	\$125	\$5,952	
	\$5,337	\$34				\$41	\$6,508	

4. Other considerations

- Cow cull rate
- Sire selection
- Embryo transfer
- Misidentification
- Recessives
- Timing of return on investment
- Partial genomic testing
- Other ways to rank animals

5. Take home messages

- 1. Genomic testing is profitable when at least:
 - Have surplus dairy heifer calves (good reproduction, sexed semen)
 - Good response to genetics
 - Embryo transfer
- 2. Crossbred calf premiums reduce the value of genomic testing
 - Genomics for selective mating decisions less valuable than for culling decisions
- 3. Finding greatest value is complicated; you need a good plan

Thank you devries@ufl.edu