

Valuing nitrogen release from soil organic matter

Gabriel LaHue, Cheyenne Sloan, Deirdre Griffin LaHue, Lisa Wasko DeVetter, and Chris Benedict

Washington Small Fruit Conference 2019

Blueberry N management guidelines

- Nitrogen fertility work in OR and BC has shown:
 - No difference in yield above 50 lbs. acre-1

• Yield increases up to 106 lbs. acre-1

Strik and Buller, 2014 (Acta Hort.)

Ehret et al., 2014 (Can. J. Plant Sci.)

• OSU Nutrient Management Guide: 165 lbs. acre-1

This work was mostly done on relatively low organic matter soils (4–5% OM)

Oregon State Extension Service

How does soil organic matter factor in?

Location of peat soils in Skagit and Whatcom counties (CBI, 2019)

Expected nitrogen release

Phosphorus	Bray	mg/kg	86	
Potassium	NH4OAc	mg/kg	249	
Boron	DTPA	mg/kg	0.54	
Zinc	DTPA	mg/kg	5.4	
Manganese	DTPA	mg/kg	2.4	
Copper	DTPA	mg/kg	7.0	
Iron	DTPA	mg/kg	70	
Calcium	NH4OAc	meq/100g	7.6	
Magnesium	NH4OAc	meq/100g	0.9	
Sodium	NH4OAc	meq/100g	0.11	
Lime Req		Tons/Acre	0.0	
Buffer pH	SMP		6.6	
Cation Exchange	CEC	meq/100g	12.1	

Depth N	litrate-N	Sulfate	e-S N	/loisture	
Organic Matter	W.B.	%	3.0	ENR:	59
Ammonium - N	m	g/kg	1.3		4
Effervescence				<u>Lb</u>	s/Acre
Est Sat Paste E.	C. m.mno	s/cm (0.52		
Fat Cat Dasta F	C		2.52		
E.C. 1:1	m.mho	s/cm (0.20		
pH 1:1			6.6	CaCI2	pH 6.2

Depth	Nitra	ite-N	Sulfate-S	Moisture			
inches	mg/kg	lbs/acre	mg/kg	Inches			
0 - 12	5.5	18	10				
Totals	5.5	18	10				
Sum of Tested N: 81 lbs/acre N							

Expected nitrogen release

A & L WESTERN AGRICULTURAL LABORATORIES

10220 S.W. NIMBUS AVE | BUILDING K-9 | PORTLAND, OREGON 97223 | (503) 968-9225 | FAX (503) 598-7702

REPORT NUMBER: 19-086-078

CLIENT NO:

SEND TO:

SUBMITTED BY:

GROWER:

DATE OF REPORT: 04/01/19

SOIL ANALYSIS REPORT

AGE:

ID NUMBER		Potassium	um Magnesium	Calcium	Sodium Na	pH		Hydrogen	Cation Exchange	PERCENT								
	NaHCO ₃ -P	K				CERT EXIST												
	****	(OlsenMethod)	ppm	ppm	ppm .	ppm ppm	Soil pH	Buffer Index	H meq/100g	Capacity C.E.C. meq/100g	K %	Mg %	Ca %	н %	Na %			
B4N	58766	2.4M	79	61VH	40**	147H	108M	884M	36L	6.1	7.2	0.9	6.8	5.6	13.1	65.1	14.0	2.3
C4S	58767	2.4M	77	80VH	52H	180H	97M	1056H	23L	6.3	6.9	0.8	7.4	6.2	10.7	71.2	10.5	1.4
D5	58768	2.6M	83	76VH	42H	141M	107M	1120H	20L	6.4	7.0	0.7	7.6	4.7	11.6	73.5	9.0	1.1
D4	58769	2.3M	77	66VH	41H	163H	103M	1111H	26L	6.5	7.0	0.6	7.5	5.6	11.3	74.1	7.5	1.5
E4E	58770	2.8M	86	83VH	48∨H	134M	119M	1240VH	26L	6.7	7.1	0.4	8.0	4.3	12.2	77.6	4.5	1.4

Research questions and hypotheses

- Question 1: What is the contribution of soil organic matter (SOM) to plant available nitrogen across a range of SOM?
 - Hypothesis 1b: Nitrogen release from soils can be predicted by soil organic matter
 - Hypothesis 1a: Equations to predict nitrogen release developed in low SOM soils don't work well for high SOM soils

- Question 2: Does the nitrogen fertilizer requirement for optimal yield differ predictably based on SOM?
 - Hypothesis 2: Higher nitrogen rates will be required to maximize yield in lower SOM soils

Methods

- Laboratory incubation: Determine N release from soils
 - Collected soil samples from 5 locations each in 10 fields with SOM contents ranging from 3-53%
 - Incubated soil samples at soil temperatures representative of those for April – September
 - Measured plant available nitrogen (in progress)

Methods

- Field experiment: How do optimal N rates vary with SOM?
 - Applied 20, 50, or 80 lbs. acre⁻¹ at 4 field sites with soils ranging from 5–44% SOM
 - Measured fruit yield, fruit size, firmness, leaf tissue N, and vegetative growth
 - Fruit quality (°Brix, pH), soil nitrate and ammonium, and cold-hardiness measurements in progress

Preliminary results: N mineralization

Lab Incubation

Significant relationship between NO₃ mineralized and SOM Not strong enough to be useful (yet) to adjust N rates

Preliminary results: N mineralization

Lab Incubation

Results similar to other studies ... even those that exclude peat soils

Preliminary results: Fruit yield

Field Experiment

Preliminary results: Fruit size

Field Experiment

Preliminary results: Fruit firmness

Field Experiment

Preliminary results: Leaf tissue nitrogen

Field Experiment

Below normal Deficient

Late July to mid-August is recommended for sampling (leaves sampled on August 16th)

Hart et al. 2006, Strik and Vance 2015

Preliminary results: Vegetative growth

Field Experiment

Preliminary conclusions and future steps

- Nitrogen release from soil increases with increasing soil organic matter, but the relationship is too weak to be useful
 - Next step: Evaluate other easily measured indicators (mineralizable C, hot-water extractable organic N)

- No differences in fruit yield or quality among N application rates at any site
 - Expected for first couple years
 - Next step: Continue field experiment for at least 3 years

Acknowledgements

Thank you very much to all of our amazing grower-collaborators on this project!

Betsy Schacht, Sam Hordyk, Shiwani Sapkota Washington Blueberry Commission USDA NIFA Hatch Project 1014527

Questions?