

Fine-Tuning Organic Nitrogen Fertilizer Source, Rate, and Cut-off Timing in Organic Highbush Blueberry

Amit Bhasin, J.R. Davenport, G.A. Hoheisel, and L.W. DeVetter

Washington Leads in Organic Blueberry Production

- Washington State is the largest national producer of organic highbush blueberries
- ~ 46% of nation's organic production
- ~ \$38 million estimated value

SKAGIT
SNOHOMISH
SSEattle
SNOHOMISH
STATE
SPANKLIN
FRANKLIN
BENTON
WALLA WALLA
Columbia
STATE
Co

(USDA NASS 2017)

Washington Leads in Organic Blueberry Production

Variable	Requirements for blueberry	Native soil conditions in eastern Washington
pН	4.2-5.5	7.5-8.3
Organic matter	High (3-5%)	Low (<1%)
Predominate form of nitrogen	$\mathrm{NH_4} ext{-N}$	NO_3 -N

Dancer et al., 1973; Hart et al., 2006

 Blueberry cultivars respond differently to organic N fertilizer sources

• Rates of N application varies with plant age (Bryla and Strik, 2015)

Objective and Research Questions

• Experiment #1 - Source and Rate

Evaluate the impacts of commercially available organic N fertilizer sources applied at low, medium, and high rates on blueberry plant growth, development, yield, and select soil characteristics

Research questions?

To find an **optimal organic N fertilizer source and rate** for northern highbush blueberry plants

Materials and Methods - Treatments

- Four organic N treatments
 - 1. WISErganic (3N-0.9P-1.6K)

- 2. Blood meal (15N-0P-0K)
- 3. True fish emulsion (4N-0P-1.6K)
- 4. Combination (40% blood meal + 60% WISErganic)

• Three rates: 50 (low), 100 (medium), and 150 (high) lbs/acre N

Phosphorus (P) and Potassium (K) applied at 43 and 82 lbs/acre, respectively

ProPhos (0N-8.6P-0K) ProK (0N-0P-16.4K)

Materials and Methods – Experimental Design

• RCB design with plots split for different fertilizer rates

Main plot - **fertilizer source** Sub-plot- **rate**

- Each treatment was replicated 4 times
- 12 plants/plot **–10 plants** for data collection
- Orientation: N S
- Experiment size: 0.2 acres

Materials and Methods – Fertilizer Applications

- Fertilizer applications began at ~5 to 10% bloom
- Blood meal applied twice in the season
 - Four parts water with one-part blood meal (4:1)
- Liquid fertilizers (True fish emulsion, WISErganic) applied biweekly
- All fertilizers were applied around the crown of the plants

Data collection

• Plant variables

- Cumulative shoot growth June to September 2018 May to September 2019
- Whip production
- Average yield (lbs/bush)
- Leaf tissue nutrients mid August

- Berry firmness and mass
- Soluble solids concentrate (°Brix) and titrable acidity

Soil properties

- Soil pH and Soil electrical conductivity (1:1)
- NH_4 -N and NO_3 -N

Data Collection - Continued

- Soluble N release from organic N fertilizers
 - PRS (plant root simulators) NH₄-N and NO₃-N
 - Installed in **medium rate** plots; on the slope of the bed

Results – Shoot Growth 2018

NS, *,**, and *** indicate nonsignificant or significant differences at $P \ge 0.05$, 0.001, or 0.0001, respectively.

Results – Shoot Growth 2019

were observed across treatments

NS, *,**, and *** indicate nonsignificant or significant differences at $P \le 0.05$, 0.001, or 0.0001, respectively.

Results – Whips Production and Average Yield

Treatments	No. of whips/bush	Average yield (lbs/bush)
Year (Y)		
2018	$5 \mathbf{b}^{\mathrm{z}}$	10.93 b
2019	6 a	13.27 a
Rate (R) y		
Low	6	12.50
Medium	6	12.00
High	6	11.72
Source (S)		
True fish emulsion	5	13.60
Blood meal	6	11.50
Combination	6	11.80
WISErganic	6	11.48
Significancex		
\mathbf{Y}	0.0013	0.0001
R	0.075	0.135
S	0.376	0.502

^zMeans followed by the same letter within a treatment or interaction are not statistically different ($P \ge 0.05$). ^yFertilizer rates were split within source at low, medium, and high rates (57, 112, and 168 kg ·ha⁻¹). ^xP-value with significance at $\alpha = 0.05$.

Results – Leaf Macro and Micro Tissue Nutrients

- All tissue nutrient concentrations were within the recommended range; except Cu
- Leaf N concentration increased with higher N application rates
- No differences was observed among treatments
- No signs of deficiency was observed
- Leaf tissue nutrient concentration showed yearly differences

Results – Firmness and Berry Mass

Treatments	Firmness (g/mm of deflection)	Berry mass
	(g/IIIII of deflection)	(g/berry)
Year (Y)		
2018	171.43 b ^z	2.27 a
2019	182.89 a	2.10 b
Rate (R) ^y		
Low	174.31 b	2.19
Medium	178.30 a	2.20
High	178.88 a	2.17
Source (S)		
True fish emulsion	177.24 b	2.18
Blood -meal	175.85 b	2.19
Combination	181.73 a	2.17
WISErganic	173.85 b	2.20
Significance ^x		
Y	0.0001	0.0001
R	0.004	0.828
S	0.0001	0.953

^zMeans followed by the same letter within a treatment or interaction are not statistically different ($P \ge 0.05$). ^yFertilizer rates were split within source at low, medium, and high rates (57, 112, and 168 kg ha⁻¹). ^xP-value with significance at $\alpha = 0.05$.

Results – Soil Properties

Treatments	Soil pH (1:1)	Soil NO ₃ -N (mg·kg ⁻¹)	Soil $\mathrm{NH_{4}} ext{-}\mathrm{N}$ ($\mathrm{mg} ext{-}\mathrm{kg} ext{-}\mathrm{1}$)	Electric conductivity EC (dS·m ⁻¹)
Baseline readings ^z	5.08	4.63	11.83	0.33
Rate (R)y				
Low				
Medium			10.76 b	2.55
High				
Source (S)				
True fish emulsion				
Blood Meal			4.58 c	2.03
Combination				
WISErganic			32,40 a	2.73
Significance ^w				
R	0.014	0.005	< 0.0001	0.465
S	0.241	0.0004	< 0.0001	0.367
$\mathbf{R} \times \mathbf{S}$	0.637	0.134	0.0003	0.544

^zBaseline average soil pH, NH₄-N, and NO₃-N before starting fertilizer N applications.

^yFertilizer rates were split within source at low, medium, and high rates (57, 112, and 168 kg·ha⁻¹).

^{*}Means followed by the same letter within a treatment or interaction are not statistically different $(P \ge 0.05)$.

 $^{^{\}text{w}}$ *P*-value with significance at α = 0.05.

Results – Soluble N by Temperature

 $^{\circ}$ E

Temperature (

Results – Soluble N by Moisture

Summary – Experiment 1

- Few to no differences due to fertilizer source and rate; vegetative growth variables followed yearly differences
- No signs of nutrient deficiency were observed; leaf macro- and micronutrients were within the sufficiency range
- Perennials can store nutrient; further year of data collection is required
- Both soil and PRS N data suggests rapid nitrification

Experiment 2- Timing of N Application

- Availability of nitrogen (N) is critical
- Late bloom to fruit maturity; rapid growth and maximum N uptake (Throop and Hanson, 1997)
- Postharvest applications of N is not recommended
- Late growth flushes can lead to winter injury by delaying acclimation
- N applied too late can reduce fruit bud set

Nitrogen Allocation

- Contribute to **N** storage pool in plant
- Uptake of N derived from fertilizer increased dry weight accumulation and N concentrations in leaves and shoots past July (Bañados et al., 2012)
- Root growth flush postharvest (Abbot and Gough, 1987)

Potential Benefits:

 Postharvest N application may encourage lateral shoot growth and provide additional fruiting wood for the following season

Objective and Hypotheses

• Experiment #2 – Timing of Postharvest N Application

Study the impacts of postharvest N fertilization on plant growth, yield, fruit bud set, and cold hardiness in an early-fruiting blueberry 'Duke'

Research question?

Will postharvest N applications of N increase fruit bud set in early-fruiting 'Duke'?

Are they causing **cold injury** in fruiting buds?

Material and Methods - Treatments

Treatments

- 1. Control (100% of N applied pre-harvest; standard grower practice)
- 2. 80/20 (80% of N pre-harvest, remaining 20% post-harvest)
- 3. 70/30 (70% of N pre-harvest, remaining 30% post-harvest)
- 4. 60/40 (60% of N applied pre-harvest and remaining 40% post-harvest)
 - 4 treatments applied @ 116 lbs/acre N
 - Fertilizer source is WISErganic (3N-0.9P-1.6K)
 - Fertilizer applied weekly from mid-Apr. to late Aug. 2018 & 2019

Material and Methods – Experimental Design

- Randomized complete block design
- 16 plants/treatment **12 plants** for data collection
- Each treatment was replicated 4 times
- Orientation: S-N
- Experiment size: 0.05 acres

Data collection

• Plant variables

- Cumulative shoot growth June to September 2018 May to September 2019
- Whip production
- Average yield (lbs/bush)
- Leaf tissue nutrients mid August

- Berry firmness and mass
- Soluble solids concentrate (Brix) and titrable acidity

Soil properties

- Soil pH and Soil electrical conductivity (1:1)
- NH_4 -N and NO_3 -N

Data collection – Fruit Bud Set and Cold Hardiness

• % Fruit bud set per lateral =

Fruiting buds
Total buds
per lateral

Diagram: U. Maine

• Cold hardiness (measured monthly in October, November, and December) using Polar pod method

Results – Shoot Growth 2018 & 2019

NS denotes not statistically significant at $\alpha = 0.05$.

Results – Whip Production, Average Yield, and Fruit Bud Set

^x*P*-value with significance at $\alpha = 0.05$.

Results – Leaf Macro and Micro Tissue Nutrients

- All tissue nutrient concentrations were within the recommended range; except Cu
- No differences was observed among treatments
- No signs of deficiency was observed
- Leaf tissue nutrient concentration showed yearly differences

Results – Firmness and Berry Mass

Treatments	Firmness (g/mm of deflection)	Berry mass (g/berry)
Year (Y)		
2018	198.72 a ²	2.86
2019	155.71 b	2.77
Treatment (T)		
Control	171.41	2.89
80/20	163.91	2.83
70/30	170.05	2.82
60/40	174.70	2.72
Significance ^y		
Y	0.0001	0.155
T	0.0001	0.290
Y X T	0.246	0.619

^zMeans followed by the same letter within a treatment or interaction are not statistically different $(P \ge 0.05)$

 $^{^{}y}P$ -value with significance at $\alpha = 0.05$

Results – Cold Hardiness (October)

Temperature 14 °F to -2 °F

Means with same letter within a temperature treatment are not different due to treatment at $\alpha = 0.05$

Results – Cold Hardiness (November)

Temperature 7 °F to -9 °F

Means with same letter within a temperature treatment are not different due to treatment at $\alpha = 0.05$

Results – Cold Hardiness (December)

Temperature -2 °F to -18°F

Means with same letter within a temperature treatment are not different due to treatment at $\alpha = 0.05$

Average 28- Year Minimum and Maximum Temperatures (°F) from Oct. -Dec. (1990 – 2018)

Summary

- We observed no signs of nutrient deficiency
- No increment in fruit bud set
- Yield tended to increase with the later fertilizer application treatment
- Further years of data collection is necessary considering the **slow** response of perennials to fertilizer applications
- Postharvest N application had no detrimental effect on bud acclimation process
- Further research is needed to see if postharvest application can affect deacclimation process in spring

Acknowledgements

NORTHWEST CENTER FOR SMALL FRUITS RESEARCH

- Graduate Committee: Dr. Lisa Wasko DeVetter, Dr. Joan Davenport, and Ms. Gwen Hoheisel
- Dr. Lav Khot, Dr. Kyle Bair, Nate Stacy, and Maia Blom, Sean Watkinson
- Grower cooperators
- SFH Team: Prudence Dimakatso, Juan Quiros Vargas, Abhilash Chandel, Huan Zhang, Weixin Gan, Yixin Cai, Brenda Madrid, Kyra Stensgaard, and Nadia Bostan

References

- Abbott, J.E. and R.E. Gough. 1987. Seasonal development of highbush blueberry roots under sawdust mulch. J. Amer. Soc. Hort. Sci. 112:60–62.
- Alt., D.S., J.W. Doyle, and A. Malladi. 2017. Nitrogen-source preference in blueberry (Vaccinium sp.): Enhanced shoot nitrogen assimilation in response to direct supply of nitrate. J. Plant. Physiol. 216:79-87.
- Bañados, M.P., B.C. Strik, D.R. Bryla, and T.L. Righetti. 2012. Response of highbush blueberry to nitrogen fertilizer during field establishment I: Accumulation and allocation of fertilizer nitrogen and biomass. HortScience 47:648–655.
- Brady, M., E. Kirby, and D. Granatstein. 2015. Trends and economics of Washington State organic blueberry -production. Washington State Univ. Ext. Fact Sheet FS154E.
- Darnell, R.L. and S.A. Hiss. 2006. Uptake and assimilation of nitrate and iron in two *Vaccinium* species as affected by external nitrate concentration. J. Amer. Soc. Horti. Sci. 131:5-10.
- Davenport, J. R., and L. W. DeVetter. 2019. Evaluating and revising guidelines for blueberry nutrient standards in Washington. Proc. Western Nutri. Mgmt. Conf. 13: 16 17.
- Halvin, J.L., S. L. Tisdale, W. L. Nelson, L. Werner and James D. Beaton. 2015. Soil fertility and fertilizers, New York: Macmillan. 8th edition. Pearson, London, United Kingdom.
- Hart, J., B. Strik, L. White, and W. Yang. 2006. Nutrient management for blueberries in Oregon. Ore. State Univ. Ext. Serv. EM 8918.
- Larco, H., B.C. Strik, D.R. Bryla, and D.M. Sullivan. 2013. Mulch and fertilizer management practices for organic production of highbush blueberry. II: Impact on plant and soil nutrients during establishment. HortScience 48:1484-1495.
- Throop, P.A. and E.J. Hanson. 1997. Effect of application date on absorption of ¹⁵N by highbush blueberry J. Amer. Soc. Hort. Sci. 122:422-426.
- United State Department of Agriculture Natural Resources Conservation Services (USDA-NCRS). 2019. Web Soil Survey. <u>25 Sept. 2019.</u>
- < https://soilseries.sc.egov.usda.gov/OSD Docs/W/WARDEN.html>.

Thank you! Questions?

For more information Phone: 509-778-1059

email: amit.bhasin@wsu.edu

SFH Website: https://smallfruits.wsu.edu/

	True 402 ^z (4N-0P-1.6K)	WISErganic ^y (3N-0.9P-1.6K)	Blood meal ^x (15N-0P-0K)
Organic N (%)	3.8%	2.8%	14.9%
Ammonium (NH ₄ -N)	0.15%	0.0009%	0.038%
Nitrate (NO ₃ -N)	0.05%	0.12%	0.001%
рН	4.2 - 5.7	4.2	7