

Do commercial mycorrhizae inoculants improve raspberry growth?

Qianwen Lu, PhD student Northwestern Washington Research & Extension Center Washington State University, WA Advisors: Drs. DeVetter, Bunn, and Tao

The Fact Is...

Raspberry is important in WA, however...

Synthetic fertilizers and soil fumigation

Inadvertently reduce beneficial soil biota

(Geisseler and Scow, 2014; Mazzola et al., 2015)

 Buildup of soil-borne pathogens (root rot and root lesion nematode) Reduce raspberry health

(Rudolph and DeVetter, 2015)

Photo by J.E. Weiland

Photo from Department of Agriculture and Food of Western Australia

Arbuscular Mycorrhizae (AM) Fungi

- Form symbiosis with host plants
- Provide nutrients in exchange of photosynthetic products
- Major function: increase plant uptake of nutrients

We Find That...

JULY 29, 2019 BY LANDSCAPE-WATER-CONSERVATION

Benefits of Mycorrhizae

Potential Benefits of Mycorrhizae:

- Enhanced water and nutrient uptake
- Reduction of irrigation requirements
- Reduction need for fertilizer
- Increased drought resistance
- Increased pathogen resistance
- Increased plant health and stress tolerance
- Higher transplanting success

Source/image: News from landscape water conservation on 07/29/2019

ARTICLE

https://doi.org/10.1038/s42003-019-0481-8

OPEN

Synergies between mycorrhizal fungi and soil microbial communities increase plant nitrogen acquisition

Rachel Hestrin 1, Edith C. Hammer², Carsten W. Mueller 3 & Johannes Lehmann 1,4,5 Source: Hestrin et al., 2019

Research Article

SCI

eceived: 24 June 201

Revised: 11 August 2

Accepted article published: 17 August 2

Published online in Wiley Online Library: 10 October 201

(wileyonlinelibrary.com) DOI 10.1002/jsfa.9316

Effect of fertilization and arbuscular mycorrhizal fungal inoculation on antioxidant profiles and activities in *Fragaria ananassa* fruit

José Parada,^a Tamara Valenzuela,^a Francisca Gómez,^a Gonzalo Tereucán,^a Susana García,^{a,b} Pablo Cornejo,^{a,b}o Peter Winterhalter^c and Antonieta Ruiz^{a,b*}o

Source/image: Parada et al., 2018

ARTICLE

ttps://doi.org/10.1038/s42003-019-0481-8

OPEN

Synergies between mycorrhizal fungi and soil microbial communities increase plant nitrogen acquisition

Rachel Hestrin 1, Edith C. Hammer², Carsten W. Mueller 3 & Johannes Lehmann 1,4,5

Plant biomass response

 Plants colonized with AM fungi are associated with significantly higher biomass than control plants

Commercial mycorrhizae big sale!!!

mmmm...
Let me think

Background

- Mycorrhizae fungi
- ✓ Mobilize and transfer nutrients to ✓ Provide nutrients in long run with plants
- ✓ Mitigate biotic and abiotic stress
- ✓ Less susceptible to diseases

- Organic-derived fertilizer source
- slow releasing rate
- ✓ Increase soil quality
- ✓ Reduce pollution

Parada et al., 2018

Potential benefits of these two factors have not been characterized in raspberry !!!

Source/image: Fruit and vegetable pictures

2 Objective

Objective: Evaluate combined effects of different fertilizer sources and mycorrhizae fungal inoculants in red raspberry

Experiment: Greenhouse experiment evaluating different commercial mycorrhizae inoculants and fertilizer sources

3 Experimental Approaches

A greenhouse experiment was established at the Northwestern Washington Research and Extension Center, WSU, in June 2019

Light: 12 hr day/night cycle Temperature: 16 °C (60.8 °F) Temperature and Humidity were recorded at 15 min intervals with HOBO Data Logger (Onset, Bourne, MA).

'Sandwich' method

Sandwich

Schematic figure of 'sandwich' method

Sandwich

Fertilizer treatments:

1. Organic fertilizer: WISErganic (3-0.9-1.7)

2. Synthetic fertilizer: Urea(46)+phosphate (19.6)+potash(49.8)

3. No fertilizer control

Note: Organic and synthetic fertilizer treatments have consistent N, P, K

Mixed soil media:

Sterilized field soil (Lynden,

WA): Sand: Turface MVP =

Deepot

1:1:1

Schematic figure of 'sandwich' method

Tissue culture 'Meeker' raspberry

Raspberry roots

Mycorrhizal inoculation treatments:

1. Bio-Organics (Bio-Organics

LLC, New Hope, PA)

2. Endo (Mycorrhizal Applications, Grants Pass, OR)

3. MYKOS (Xtreme Gardening, Gilroy, CA)

- **4. Raspberry field community** (Lynden, WA)
- 5. Non-inoculated control

Experimental Design

- Randomized complete block design (RCBD)
- 8 replications (blocks)
- 5 mycorrhizae × 3 fertilizer =15 treatment combinations

Data Collection

Jun-Oct, 2019

• Plant growth.

Plant height
Chlorophyll content
Shoot and root biomass

Plant and soil nutrients.

Macro- and micro- nutrient concentrations of plant shoots

Mycorrhizae fungal colonization.

4 Results

June August October

Procedures of Observing and Calculating Fungal Colonization

Clearing (2.5 % KOH)

Observation

Counting

Staining (0.05% Trypan blue)

Raspberry roots

Root slide

Microscope

Magnified intersections method

Mycorrhizae Colonization rate

Table 1. Mycorrhizae colonization rates of red raspberry roots

Treatment combination				Colonization rate (%) ^y		
Jic		Bio-Organics			17 ± 3 a ^z	
rgal	Endo		10 ± 1 b			
WISErganic		MYKOS			22 ± 2 a	
\geq	Raspberry field community		2 ± 1 c			
	Treatment combination			Colonization rate (%)		
Urea		Bio-Organics			32 ± 4 a	
	Endo		4 ± 1 b			
		MYKOS			26 ± 2 a	

^yOnly vesicles and hyphae are observed, no arbuscules are found

^Z Data displayed are means \pm standard errors (SE) (sample size=3), different letters under the same fertilizer treatment represent significant difference (p < 0.05)

Root Biomass

Different letters in the same graph represent significant difference (p < 0.05)

5 Conclusions

 Plants formed more mycorrhizae with MYKOS and Bio-Organics than Endo

 Growth measurements were more impacted by fertilizer treatment than mycorrhizal inoculants

 Further research are needed to justify the role of mycorrhizae on raspberry growth and development

Acknowledgements

The work is supported by:

Washington Red Raspberry Commission

Washington State Department of Agriculture

Lisa DeVetter, Advisor Rebecca Bunn, Advisor Haiying Tao, Advisor

Erika Whitney, Collaborator

Sean Watkinson, Technician

Labmates:

Amit Bhasin
Huang Zhang
Weixin Gan
Yixin Cai

Thank you!

qianwen.lu@wsu.edu

For more information about raspberry, please visit

https://smallfruits.wsu.edu/raspberry/

References

- Altamimi et al. 2013. Nitrate-Nitrogen Sufficiency Ranges in Leaf Petiole Sap of *Brassica Oleracea* L., Pac Choi Grown with Organic and Conventional Fertilizers. Hortscience 48(3): 357-368.
- Douds et al. 2017. Positive Yield Response of Eggplant (*Solanum Melongena* L.) to Inoculation with AM Fungi Produced On-farm. Scientia Horticulturae 224: 48-52.
- Geisseler and Scow. 2014. Long-term Effects of Mineral Fertilizers on Soil Microorganisms A Review. Soil Biology and Biochemistry 75: 54-63.
- Geisseler et al. 2016. Mineral Nitrogen Input Decreases Microbial Biomass in Soils under Grasslands but Not Annual Crops. Applied Soil Ecology 106: 1-10.
- Hestrin et al. 2019. Synergies between Mycorrhizal Fungi and Microbial Communities Increase Plant Nitrogen Acquisition. Communications Biology 2(1): 233-242.
- Mcgonigle et al. 1990. A New Method Which Gives an Objective Measure of Colonization of Roots by Vesicular—arbuscular Mycorrhizal Fungi. New Phytologist 115(3): 495-501.
- Moore et al. 2011. 21st Century Guidebook to Fungi. Cambridge University Press.
- Parada et al. 2019. Effect of Fertilization and Arbuscular Mycorrhizal Fungal Inoculation on Antioxidant Profiles and Activities in Fragaria Ananassa Fruit. Journal of the Science of Food and Agriculture 99(3): 1397-1404.
- Rudolph and Devetter. 2015. Management Strategies for *Phytophthora Rubi* and *Pratylenchus Penetrans* in Floricane Red Raspberry (*Rubus Idaeus* L.). Journal Of The American Pomological Society 69(3): 118-136.

Plant Height by Treatment

Fertilizer Treatment

Different letters represent significant difference (p < 0.05)

Mycorrhizae Colonization rate

Table 1. Mycorrhizae colonization rates of red raspberry roots

Treatment				Vesicles ^y Colonization rate	Hyphae Colonization rate
nic		Bio-Organics		0.09±0.01 a ^z	0.08±0.02 b
gal	Endo		0.05±0.01 b	0.05±0.01 c	
WISErganic		MYKOS		0.11±0.02 a	0.11±0.01 b
\geq	Raspberry field community		0.01±0.00 c	0.01±0.00 d	
æ		Bio-Organics		0.14±0.03 a	0.18±0.03 a
Urea	Endo		0.01±0.00 c	0.03±0.01 c	
		MYKOS		0.11±0.02 a	0.15±0.03 a

^yOnly vesicle and hyphae are observed, no arbuscules are found

^Z Data displayed are means \pm standard errors (SE) (sample size=3), different letters within the same column represent significant difference (p < 0.05)

Fertilizer Details

Table 4. Characteristics of field soil and mixed soil media

	Field soil	Mixed soil media
Organic Matter (%)	3.76	1.85
NO3-N (ppm)	6.5	1.0
NH4-N (ppm)	4.2	4.6
Phosphorus (ppm)	313	315
Potassium (ppm)	247	206
KCl Aluminum (ppm)	1.40	1.08
Calcium (ppm)	2792	1516
Magnesium (ppm)	130	213
Manganese (ppm)	33	49
Boron (ppm)	0.62	1.00
Iron (ppm)	176	244
Copper (ppm)	6.31	4.41
Zinc (ppm)	6.66	5.13

Table 3. Basic information of commercial mycorrhizae

	Micronized Endomycorrhizal Inoculant	MycoApply® Endo	MYKOS
Content	A blend of nine top types of Endo mycorrhizal spores: Glomus aggregatum, G. etunicatum, G. clarum, G. deserticola, G. intraradices, G. monosporus, G. mosseae, Gigaspora margarita, and Paraglomus brasilianum	4 species Endomycorrhizae : Glomus intraradices, Glomus mosseae, Glomus aggregatum, Glomus etunicatum	This single species of arbuscular mycorrhizal fungi contains only Rhizophagus intraradices, formally known as Glomus intraradices. MYKOS does not contain any other microbes such as Trichoderma or ectomycorrhizae.
Description	A minimum of 50 spores per cubic centimeter	60,000 Endomycorrhizal Propagules per Ib	Rhizophagus intraradices 300 propagules / gram

AM fungal inoculation treatments:

1. Micronized Endomycorrhizal Inoculant

10 ml

- 2. MycoApply Endo
 Dip in 0.6 g/L solution for 5 sec
- 3. MYKOS

10 ml

- 4. Healthy raspberry field community 44.36 ml
- 5. Non-inoculated control

Mixed soil media