Use of Biodegradable Plastic Mulches as an Alternative to Polyethylene Mulch in Day-Neutral Strawberry

Lisa Wasko DeVetter Assistant Professor of Horticulture WSU NWREC – Mount Vernon, WA

Email: <u>lisa.devetter@wsu.edu</u>

Mulches in Agriculture

- Mulches are physical coverings placed on the soil surface
- Applied for weed management, modification of soil temperature, reduction of soil evaporation, soil protection, and overall promotion of crop growth
- May be made from natural or synthetic materials

What is a Biodegradable Mulch (BDM)?

- BDM → BioDegradable Mulch
 - Paper or plastic
 - Engineered to biodegrade in soils upon incorporation
 - Plastic BDMs manufactured with different feedstocks and additives compared to nondegradable polyethylene (PE) mulches
 - Should achieve ≥ 90% biodegradation in laboratory-based soil tests within two years or less due to microbial activities and in accordance with ASTM D5988-18 and EN 17033

Life of a BDM

UV Radiation

Why Consider a BDM?

Perceived to be a more sustainable technology and may:

- Provide the same horticultural benefits as PE-based mulches
- Reduce labor and costs associated with mulch removal
- Promote on-farm efficiencies
- Reduce plastic waste generation

Mounting Concerns over Plastics

Plastics in Agriculture*

- US agriculture uses ~1 billion pounds of plastics annually
- Most mulch is stockpiled or landfilled; sometimes soil incorporated or burned
- Less than 10% recycled
- Waste management challenges

Research with BDMs in Washington

HORTSCIENCE 52(12):1700-1706. 2017. doi: 10.21273/HORTSCI12422-17

Plastic Biodegradable Mulches Reduce Weeds and Promote Crop Growth in Day-neutral Strawberry in Western Washington

Lisa W. DeVetter^{1,5}, Huan Zhang², Shuresh Ghimire², Sean Watkinson³, and Carol A. Miles⁴

Department of Horticulture, Northwestern Washington Research and Extension Center, Washington State University, 16650 State Route 536, Mount Vernon, WA 98273

Additional index words. Fragaria ×ananassa, plasticulture, plastic mulch, paper mulch, growth analysis

HORTSCIENCE 52(1):10-15. 2017. doi: 10.21273/HORTSCI11249-16

Suitability of Biodegradable Plastic Mulches for Organic and Sustainable Agricultural Production Systems

Carol Miles¹, Lisa DeVetter, and Shuresh Ghimire

Department of Horticulture, Washington State University, Northwest Washington Research and Extension Center, 16650 State Route 536, Mount Vernon, WA 98273

Douglas G. Hayes

Department Biosystems Engineering and Soil Science, University of Tennessee–Knoxville, 2506 E.J. Chapman Drive, Knoxville, TN 37996-4531

- Vegetables (Dr. Miles)
- Day-neutral strawberry
- Raspberry

Objectives

Evaluate commercial biodegradable mulches (BDM) in comparison with standard black PE mulch and bare ground cultivation in spring- and fall-planted day-neutral strawberry grown in northwestern Washington

Experiment 1:Bareroot, Spring-Planted 'Albion' and 'Seascape'

	Albion				Seascape			
		etable plot (g) ^z	Marketable fruit number/plot		Marketable yield/plot (g)		Marketable fruit number/plot	
Treatment	2014	2015	2014	2015	2014	2015	2014	2015
Bio360	253 a ^y	181 a	19 a	15 ab	311 ab	190 b	32	18 b
WeedGuardPlus Q	259 a	137.5 b	17 a	11 c	316 ab	144 c	30	13 c
Exp. Prototype	281 a	181.9 a	20 a	14 b	340 a	202 b	32	18 b
Plastic (PE)	295 a	200.7 a	22 a	17 a	322 ab	239 a	32	22 a
Bare ground (control)	126 b	80.0 c	9 b	6 d	257 b	96 d	25	8 d
<i>P</i> -value	<0.0001	<0.0001	<0.0001	<0.0001	0.05	<0.0001	0.47	<0.0001

^zMarketable yield and fruit number determined from annual means of harvested fruit from 64 ft² subplots.

 $^{^{}y}$ Means with the same letter within a column are not different due to treatment at $\alpha = 0.05$; a Tukey-Kramer adjustment was used for multiple comparisons.

Experiment 2:Fall-Planted 'Albion' Plugs

Project in progress and will be repeated 2019/2020

Things to Remember about BDMs...

- Not all BDMs are created equal
- BDMs vary based in their feedstocks, types of additives, thickness, and manufacturing processes
- This creates very different products that can function very differently in fields
- Growing conditions are diverse
- Not all BDMs have demonstrated complete biodegradation in soils

In-Soil Biodegradation

Buried BDMs 2 inches below the soil surface on April 20, 2018

Samples removed Oct. 23, 2019

Oxo-Degradable Plastics

Conventional polymers with chemicals added to accelerate oxidation and fragmentation with exposure to UV light and/or heat, and oxygen

Sometimes erroneously labeled "oxo-biodegradable" or "biodegradable"

BDMs in Organic Agriculture

- In Oct. 2014, the National Organic Program (NOP) passed a final rule adding biodegradable biobased mulch film to their list of allowed substances
- Yet, BDMs must meet specifications of the rule
- Currently, <u>no products</u> meet these requirements (other than paper mulch)

Acknowledgements

- Wendy Hoashi-Erhardt
- Pat Moore
- Charlie Gundersen @ Norcal/Planasa
- WSDA SCBG
- WSU ERI program

Student Helpers: Weixin Gan, Nadia Bostan, Yixin Cai, Qianwen Lu, and Brenda Madrid

Co-Investigators: Huan Zhang, Carol Miles, Shuresh Ghimire, and Sean Watkinson

Thank you! Any Questions?

Lisa Wasko DeVetter, PhD

Assistant Professor of Small Fruit Horticulture

Washington State University NWREC

Email: <u>lisa.devetter@wsu.edu</u>

Website: http://smallfruits.wsu.edu/

