SELECTING PLANTS FOR POLLINATORS

A REGIONAL GUIDE FOR FARMERS, LAND MANAGERS, AND GARDENERS IN THE

PACIFIC LOWLAND MIXED FOREST PROVINCE

INCLUDING THE STATES OF: OREGON AND WASHINGTON

POLLINATOR PARTNERSHIP and NAPPC
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>WHY SUPPORT POLLINATORS?</td>
<td>4</td>
</tr>
<tr>
<td>GETTING STARTED</td>
<td>5</td>
</tr>
<tr>
<td>PACIFIC LOWLAND MIXED FOREST PROVINCE</td>
<td>6</td>
</tr>
<tr>
<td>MEET THE POLLINATORS</td>
<td>8</td>
</tr>
<tr>
<td>PLANT TRAITS</td>
<td>10</td>
</tr>
<tr>
<td>DEVELOPING PLANTINGS</td>
<td>12</td>
</tr>
<tr>
<td>FARMS</td>
<td>13</td>
</tr>
<tr>
<td>PUBLIC LANDS</td>
<td>14</td>
</tr>
<tr>
<td>HOME LANDSCAPES</td>
<td>15</td>
</tr>
<tr>
<td>BLOOM PERIODS</td>
<td>16</td>
</tr>
<tr>
<td>PLANTS THAT ATTRACT POLLINATORS</td>
<td>18</td>
</tr>
<tr>
<td>HABITAT HINTS</td>
<td>20</td>
</tr>
<tr>
<td>CHECKLIST</td>
<td>22</td>
</tr>
<tr>
<td>RESOURCES AND FEEDBACK</td>
<td>23</td>
</tr>
</tbody>
</table>

This is one of several guides for different regions in the United States. We welcome your feedback to assist us in making the future guides useful. Please contact us at feedback@pollinator.org

Cover bee photo by Julie Baker
A REGIONAL GUIDE FOR
FARMERS, LAND MANAGERS,
AND GARDENERS

IN THE
ECOLOGICAL REGION OF THE
PACIFIC LOWLAND
MIXED FOREST PROVINCE

INCLUDING THE STATES OF:
OREGON
AND
WASHINGTON

A NAPPC AND POLLINATOR PARTNERSHIP™ PUBLICATION

This guide was funded by the National Fish and Wildlife Foundation, the C.S. Fund, the Plant Conservation Alliance, the U.S. Forest Service, and the Bureau of Land Management with oversight by the Pollinator Partnership™ (www.pollinator.org), in support of the North American Pollinator Protection Campaign (NAPPC—www.nappc.org).
In their 1996 book, *The Forgotten Pollinators*, Buchmann and Nabhan estimated that animal pollinators are needed for the reproduction of 90% of flowering plants and one third of human food crops. Each of us depends on these industrious pollinators in a practical way to provide us with the wide range of foods we eat. In addition, pollinators are part of the intricate web that supports the biological diversity in natural ecosystems that helps sustain our quality of life.

Abundant and healthy populations of pollinators can improve fruit set and quality, and increase fruit size. In farming situations this increases production per acre. In the wild, biodiversity increases and wildlife food sources increase.

Pumpkins, broccoli, squash, and cabbage are some of the crops raised in the Pacific Lowland Mixed Forest Province that rely on honey bees and native bees for pollination. Domestic honey bees pollinate approximately $10 billion worth of crops in the U.S. each year.

Unfortunately, the numbers of both native pollinators and domesticated bee populations are declining. They are threatened by habitat loss, disease, and the excessive and inappropriate use of pesticides. The loss of commercial bees to Colony Collapse Disorder (CCD) has highlighted how severe the issues of proper hive management are to reduce stresses caused by disease, pesticide use, insufficient nutrition, and transportation practices. Currently, the pollination services that the commercial beekeeping industry provides are receiving much needed research and conservation resources. The efforts to understand the threats to commercial bees should help us understand other pollinators and their roles in the environment as well.

It is imperative that we take immediate steps to help pollinator populations thrive. The beauty of the situation is that by supporting pollinators’ need for habitat, we support our own needs for food and support diversity in the natural world.

Thank you for taking time to consult this guide. By adding plants to your landscape that provide food and shelter for pollinators throughout their active seasons and by adopting pollinator friendly landscape practices, you can make a difference to both the pollinators and the people that rely on them.

“FARMING FEEDS THE WORLD, AND WE MUST REMEMBER THAT POLLINATORS ARE A CRITICAL LINK IN OUR FOOD SYSTEMS.”

-- Paul Growald, Co-Founder, Pollinator Partnership

Laurie Davies Adams
Executive Director
Pollinator Partnership
This regional guide is just one in a series of plant selection tools designed to provide information on how individuals can influence pollinator populations through choices they make when they farm a plot of ground, manage large tracts of public land, or plant a garden. Each of us can have a positive impact by providing the essential habitat requirements for pollinators including food, water, shelter, and enough space to allow pollinators to raise their young.

Pollinators travel through the landscape without regard to property ownership or state boundaries. We’ve chosen to use R.G. Bailey’s classification system to identify the geographic focus of this guide and to underscore the connections between climate and vegetation types that affect the diversity of pollinators in the environment.

Bailey’s Ecoregions of the United States Forest Service, is a system created as a management tool and is used to predict responses to land management practices throughout large areas. This guide addresses pollinator-friendly land management practices in what is known as the Pacific Lowland Mixed Forest Province.

Portions of Oregon and Washington make up the 14,9000 square miles of this province with elevations ranging from sea level to 1,500 feet. The topography includes two valleys: the Willamette Valley, with gently sloping floodplains bordered by dissected high terraces and hills, and the Puget Sound Valley, a moderately dissected tableland covered by glacial till. Average annual temperatures range from 48° to 55°F.

This province receives moderate precipitation (15-60 inches annually), which peaks in winter. Fog makes up for some of the lack of rain during the summer months.

This province is characterized primarily by dense coniferous forests including western red cedar, western hemlock, Douglas fir. Interior valleys are often comprised of conifers and deciduous trees such as big-leaf maple, Oregon ash, and black cottonwood.

Long before there were homes and farms in this area, the original, natural vegetation provided continuous cover and adjacent feeding opportunities for wildlife, including pollinators. In choosing plants, aim to create habitat for pollinators that allow adequate food, shelter, and water sources. Most pollinators have very small home ranges. You can make a difference by understanding the vegetation patterns on the farm, forest, or neighbor’s yard adjacent to yours and by making planting choices that support the pollinators’ need for food and shelter as they move through the landscape.
UNDERSTANDING
THE PACIFIC LOWLAND MIXED FOREST PROVINCE

This region is designated number 242 in the Baileys’ Ecosystem Provinces. To see a map of the provinces go to: www.fs.fed.us/colorimagemap/ecoreg1_provinces.html

Not sure about which bioregion you live or work in? Go to www.pollinator.org and click on Ecoregion Locator for help.

- 14,900 square miles within 2 states.
- Nearly flat to sloping floodplains bordered by hills and dissected high terraces, often covered by glacial till.
- Elevations ranging from sea level to 1,500 feet.
- Average annual temperature range from 48° to 55°F.
- Average year-round precipitation between 30-45 inches.
- USDA Hardiness Zones 7-8b (1990 version).

CHARACTERISTICS

- Dominated by dense coniferous forests including western red cedar, western hemlock, Douglas fir.
- Interior valleys are often comprised of conifers and deciduous trees such as big-leaf maple, Oregon ash, and black cottonwood.
- Areas of prairies punctuated by groves of oaks, Douglas firs, and other trees.
- Swamps and bogs also commonly occur in poorly drained sites.
The Pacific Lowland Mixed Forest Province includes:

- Washington
- Oregon

"ADDING NATIVE PLANTINGS IN RIPARIAN AREAS TO IMPROVE POLLINATOR HABITAT MAKES SENSE IN ADVANCING OUR FAMILY FARM’S CONSERVATION AND ECONOMIC OBJECTIVES, ENHANCING BENEFICIAL WILDLIFE AND IMPROVING POLLINATION IN OUR ORCHARD AND GARDEN."

--Lee McDaniel, Farmer and President, National Association of Conservation Districts
WHO ARE THE POLLINATORS?

BEES
Bees are well documented pollinators in the natural and agricultural systems of the Pacific Lowland Mixed Forest Province. A wide range of crops including pumpkins, squash, broccoli, and cabbage are just a few plants that benefit from bee pollinators.

Most of us are familiar with the colonies of honey bees that have been the workhorses of agricultural pollination for years in the United States. They were imported from Europe almost 400 years ago.

There are nearly 4000 species of native ground and twig nesting bees in the U.S. Some form colonies while others live and work a solitary life. Native bees currently pollinate many crops and can be encouraged to do more to support agricultural endeavors if their needs for nesting habitat are met and if suitable sources of nectar, pollen, and water are provided. Bees have tongues of varying lengths that help determine which flowers they can obtain nectar and pollen from.

The bumble bee (*Bombus* spp.) forms small colonies, usually underground. They are generalists, feeding on a wide range of plant material from February to November and are important pollinators of tomatoes. The sweat bee (family *Halictidae*) nests underground. Various species are solitary while others form loose colonies.

Butterflies

Gardeners have been attracting butterflies to their gardens for some time. These insects tend to be eye-catching, as are the flowers that attract them. Position flowering plants where they have full sun and are protected from the wind. Also, you will need to provide open areas (e.g., bare earth, large stones) where butterflies may bask, and moist soil from which they may get needed minerals. By providing a safe place to eat and nest, gardeners can also support the pollination role that butterflies play in the landscape. It might mean accepting slight damage to the plants, known as host plants, that provide food for the larval stage of the butterfly.

A diverse group of butterflies are present in garden areas and woodland edges that provide bright flowers, water sources, and specific host plants. Numerous trees, shrubs, and herbaceous plants support butterfly populations.

Butterflies are in the Order *Lepidoptera*. Some of the species in the Pacific Lowland Mixed Forest are Brush-footed, Gossamer-winged, Cactus bees (*Diadasia* spp.) are also solitary ground nesters.
Swallowtail, Parnassian, Skipper, White, Sulphur and Milkweed butterflies. They usually look for flowers that provide a good landing platform.

Wet mud areas provide butterflies with both the moisture and minerals they need to stay healthy. Butterflies eat rotten fruit and even dung, so don’t clean up all the messes in your garden!

MOths

Moths are most easily distinguished from butterflies by their antennae. Butterfly antennae are simple with a swelling at the end. Moth antennae differ from simple to featherlike, but never have a swelling at the tip. In addition, butterflies typically are active during the day; moths at night. Butterfly bodies are not very hairy, while moth bodies are quite hairy and more stout.

Moths, generally less colorful than butterflies, also play a role in pollination. They are attracted to flowers that are strongly sweet smelling, open in late afternoon or night, and are typically white or pale colored.

BEETLES

Over 30,000 species of beetles are found in the United States and many of them can be found on flower heads. Gardeners have yet to intentionally draw beetles to their gardens, possibly because beetle watching isn’t as inspiring as butterfly or bird watching. Yet beetles do play a role in pollination. Some have a bad reputation because they can leave a mess behind, damaging plant parts that they eat. Beetles are not as efficient as some pollinators. They wander between different species, often dropping pollen as they go.

Flower pollinated plants tend to be large, strong scented flowers with their sexual organs exposed. They are known to pollinate Magnolia, sweetshrub (Calycanthus), paw paws, and yellow pond lilies.

FLIES

It may be hard to imagine why one would want to attract flies to the garden. However, like beetles, the number of fly species and the fact that flies are generalist pollinators (visit many species of plants), should encourage us all to leave those flies alone and let them do their job as pollinators.

Recent research indicates that flies primarily pollinate small flowers that bloom under shade and in seasonally moist habitats. The National Research Council’s *Status of Pollinators in North America* study states that flies are economically important as pollinators for a range of annual and bulbous ornamental flowers.

Plants pollinated by the fly include the American pawpaw (*Asimina triloba*), dead horse arum (*Helicodiceros muscivorus*), skunk cabbage (*Symplocarpus foetidus*), goldenrod (*Solidago* spp.), and members of the carrot family like Queen Anne’s lace (*Daucus carota*).

BIRDS

Hummingbirds are the primary birds which play a role in pollination in North America. Their long beaks and tongues draw nectar from tubular flowers. Pollen is carried on both the beaks and feathers of different hummingbirds. The regions closer to the tropics, with warmer climates, boast the largest number of hummingbird species and the greatest number of native plants to support the bird’s need for food. White-winged doves (*Zenaida asiatica*) are also pollinators of the saguaro cactus (*Carnegia gigantea*) in the south central United States.

Bright colored tubular flowers attract hummingbirds to gardens throughout the United States. Hummingbirds can see the color red; bees cannot. Many tropical flowers, grown as annuals in the Pacific Lowland, along with native woodland edge plants, attract hummingbirds.

BATS

Though bats in the Pacific Lowland Mixed Forest are not pollinators, bats play an important role in pollination in the southwest where they feed on agave and cactus. The long-nosed bats’ head shape and long tongue allows it to delve into flower blossoms and extract both pollen and nectar.
WHICH FLOWERS DO THE POLLINATORS PREFER?

Not all pollinators are found in each North American province, and some are more important in different parts of the United States. Use this page as a resource to understand the plants and pollinators where you live.

Plants can be grouped together based on the similar characteristics of their flowers. These floral characteristics can be useful to predict the type of pollination method or animal that is most effective for that group of plants. This association between floral characteristics and pollination method is called a pollination syndrome.

The interactions of animal pollinators and plants have influenced the evolution of both groups of organisms. A mutualistic relationship between the pollinator and the plant species helps the pollinator find necessary pollen and nectar sources and helps the plant reproduce by ensuring that pollen is carried from one flower to another.

This chart and more information on pollinator syndromes can be found at:

http://www.fs.fed.us/wildflowers/pollinators/syndromes.shtml
<table>
<thead>
<tr>
<th>Pollinator</th>
<th>Birds</th>
<th>Butterflies</th>
<th>Flies</th>
<th>Moths</th>
<th>Wind</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Scarlet, orange, red or white</td>
<td>Bright, including red and purple</td>
<td>Pale and dull to dark brown or purple; flecked with translucent patches</td>
<td>Pale and dull red, purple, pink or white</td>
<td>Dull green, brown, or colorless; petals absent or reduced</td>
</tr>
<tr>
<td></td>
<td>Absent</td>
<td>Present</td>
<td>Absent</td>
<td>Absent</td>
<td>Absent</td>
</tr>
<tr>
<td></td>
<td>None</td>
<td>Faint but fresh</td>
<td>Putrid</td>
<td>Strong sweet; emitted at night</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>Ample; deeply hidden</td>
<td>Ample; deeply hidden</td>
<td>Usually absent</td>
<td>Ample; deeply hidden</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>Modest</td>
<td>Limited</td>
<td>Modest in amount</td>
<td>Limited</td>
<td>Abundant; small, smooth, and not sticky</td>
</tr>
<tr>
<td></td>
<td>Large funnel like; cups, strong perch support</td>
<td>Narrow tube with spur; wide landing pad</td>
<td>Shallow; funnel like or complex and trap-like</td>
<td>Regular; tubular without a lip</td>
<td>Regular; small and stigmas exerted</td>
</tr>
</tbody>
</table>

This chart and more information on pollinator syndromes can be found at: http://www.fs.fed.us/wildflowers/pollinators/syndromes.shtml
Whether you are a farmer of many acres, land manager of a large tract of land, or a gardener with a small lot, you can increase the number of pollinators in your area by making conscious choices to include plants that provide essential habitat for bees, butterflies, moths, beetles, hummingbirds and other pollinators.

FOOD:
Flowers provide nectar (high in sugar and necessary amino acids) and pollen (high in protein) to pollinators. Fermenting fallen fruits also provide food for bees, beetles and butterflies. Specific plants, known as host plants, are eaten by the larvae of pollinators such as butterflies.

- Plant in groups to increase pollination efficiency. If a pollinator can visit the same type of flower over and over, it doesn’t have to relearn how to enter the flower and can transfer pollen to the same species, instead of squandering the pollen on unreceptive flowers.
- Plant with bloom season in mind, providing food from early spring to late fall. (see Bloom Periods pp.16-17)
- Plant a diversity of plants to support a variety of pollinators. Flowers of different color, fragrance, and season of bloom on plants of different heights will attract different pollinator species and provide pollen and nectar throughout the seasons.
- Many herbs and annuals, although not native, are very good for pollinators. Mint, oregano, garlic, chives, parsley and lavender are just a few herbs that can be planted. Old fashioned zinnias, cosmos, and single sunflowers support bees and butterflies.
- Recognize weeds that might be a good source of food. For example, dandelions provide nectar in the early spring before other flowers open. Plantain is alternate host for the Baltimore Checkerspot.
- Learn and utilize Integrated Pest Management (IPM) practices to address pest concerns. Minimize or eliminate the use of pesticides.

SHELTER:
Pollinators need protection from severe weather and from predators as well as sites for nesting and roosting.
- Incorporate different canopy layers in the landscape by planting trees, shrubs, and different-sized perennial plants.
- Leave dead snags for nesting sites of bees, and other dead plants and leaf litter for shelter.
- Build bee boxes to encourage solitary, non-aggressive bees to nest on your property.
- Leave some areas of soil uncovered to provide ground nesting insects easy access to underground tunnels.
- Group plantings so that pollinators can move safely through the landscape protected from predators.
- Include plants that are needed by butterflies during their larval development.

WATER:
A clean, reliable source of water is essential to pollinators.
- Natural and human-made water features such as running water, pools, ponds, and small containers of water provide drinking and bathing opportunities for pollinators.
- Ensure the water sources have a shallow or sloping side so the pollinators can easily approach the water without drowning.

Your current landscape probably includes many of these elements. Observe wildlife activity in your farm fields, woodlands, and gardens to determine what actions you can take to encourage other pollinators to feed and nest. Evaluate the placement of individual plants and water sources and use your knowledge of specific pollinator needs to guide your choice and placement of additional plants and other habitat elements. Minor changes by many individuals can positively impact the pollinator populations in your area. Watch for - and enjoy - the changes in your landscape!

CAUTION: Remember that pesticides are largely toxic to pollinators. Extreme caution is warranted if you choose to use any pesticide. Strategically apply pesticides only for problematic target species.
Broccoli, cabbage, pumpkins, and squash are a few of the food crops in the Pacific Lowland Mixed Forest Province that will benefit from strong native bee populations that boost pollination efficiency. Incorporate different plants throughout the farm that provide food for native populations when targeted crops are not in flower.

Farmers have many opportunities to incorporate pollinator-friendly land management practices on their land which will benefit the farmer in achieving his or her production goals:

• Manage the use of pesticides to reduce the impact on native pollinators. Spray when bees aren’t active (just after dawn) and choose targeted ingredients.
• Carefully consider the use of herbicides. Perhaps the targeted weeds can provide needed food for pollinators.
• Minimize tillage to protect ground nesting pollinators.
• Ensure water sources are scattered throughout the landscape.
• Choose a variety of native plants to act as windbreaks, riparian buffers, and field borders throughout the farm.
• Plant unused areas of the farm with temporary cover crops that can provide food or with a variety of trees, shrubs, and flowers that provide both food and shelter for pollinators.
• Check with your local Natural Resources Conservation Service (NRCS) office to see what technical and financial support might be available to assist you in your effort to provide nectar, pollen, and larval food sources for pollinators on your farm.

“Food supplies for bees are critical to maintaining strong hives for almond pollination the following winter.”

-- Dan Cummings, Chico, California almond grower.

Illustrations by Carolyn Vibbert
Public lands are maintained for specific reasons ranging from high impact recreation to conservation. In the Pacific Lowland Mixed Forest, forests have been cut to allow for roads, buildings, open lawn areas, boat ramps, and vistas. Less disturbed natural areas can be augmented with plantings of native plant species. Existing plantings around buildings and parking areas should be evaluated to determine if pollinator-friendly plants can be substituted or added to attract and support pollinators. Public land managers have a unique opportunity to use their plantings as an education tool to help others understand the importance of pollinators in the environment through signs, brochures, and public programs.

In an effort to increase populations of pollinators the land manager can:

- Inventory and become knowledgeable of local pollinators.
- Provide connectivity between vegetation areas by creating corridors of perennials, shrubs, and trees that provide pollinators shelter and food as they move through the landscape.
- Maintain a minimum of lawn areas that support recreational needs.
- Restrict the use of pesticides and herbicides.
- Provide water sources in large open areas.
- Maintain natural meadows and openings that provide habitats for sun-loving wildflowers and grasses.
- Remove invasive species and encroaching shrubs and trees.

From hummingbirds to beetles, to butterflies, nature’s pollinators help keep Midewin’s Tallgrass prairie restorations full of diverse flowering plants. Insect monitoring provides a key measure of our success.

-- Logan Lee
Prairie Supervisor, Midewin National Tallgrass Prairie
Gardeners have a wide array of plants to use in their gardens. Native plants, plants introduced from years of plant exploration from around the world, and plants developed by professional and amateur breeders can be found in garden centers, in catalogs, and on web-sites. Use your knowledge of pollinator needs to guide your choices.

- Choose a variety of plants that will provide nectar and pollen throughout the growing season.
- Resist the urge to have a totally manicured lawn and garden. Leave bare ground for ground nesting bees. Leave areas of dead wood and leaf litter for other insects.
- Strive to eliminate the use of all pesticides.
- Find local resources to help you in your efforts. Contact your local county extension agent or native plant society. Visit your regional botanic gardens and arboreta.

The scale of your plantings will vary but it is important to remember that you are trying to provide connectivity to the landscape adjacent to your property. Don’t just look within your property boundaries. If your neighbor’s property provides an essential element, such as water, which can be utilized by pollinators visiting your land, you may be able to devote more space to habitat elements that are missing nearby. It is best to use native plants which have evolved to support the needs of specific native pollinators. Some pollinators, however, are generalists and visit many different plants, both native and non-native. Be sure that any non-native plants you choose to use are not invasive. Remember that specialized cultivars sometimes aren’t used by pollinators. Flowers that have been drastically altered, such as those that are double or a completely different color than the wild species, often prevent pollinators from finding and feeding on the flowers. In addition, some altered plants don’t contain the same nectar and pollen resources that attract pollinators to the wild types.

- CAUTION: Take time to evaluate the source of your plant material. You want to ensure you get plants that are healthy and correctly identified. Your local native plant society can help you make informed decisions when searching for plants.

“A GARDEN IS ONLY AS RICH AND BEAUTIFUL AS THE INTEGRAL HEALTH OF THE SYSTEM; POLLINATORS ARE ESSENTIAL TO THE SYSTEM - MAKE YOUR HOME THEIR HOME.”

– DERRY MACBRIDE
NATIONAL AFFAIRS AND LEGISLATION CHAIRWOMAN, GARDEN CLUB OF AMERICA
The following chart lists plants and the time they are in bloom throughout the growing seasons. Choose a variety of flower colors and make sure something is blooming at all times! Note for all charts: When more than one species of the same genus is useful, the genus name is followed by “spp.”

<table>
<thead>
<tr>
<th>Botanical Name</th>
<th>Common Name</th>
<th>Jan</th>
<th>Feb</th>
<th>March</th>
<th>April</th>
<th>May</th>
<th>June</th>
<th>July</th>
<th>Aug</th>
<th>Sept</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trees & Shrubs</td>
<td></td>
</tr>
<tr>
<td>Acer circinatum</td>
<td>vine maple</td>
<td></td>
<td></td>
<td>red</td>
<td>red</td>
<td>red</td>
<td>red</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acer macrophyllum</td>
<td>big-leaf maple</td>
<td></td>
<td></td>
<td>greenish white</td>
</tr>
<tr>
<td>Amelanchier alnifolia</td>
<td>serviceberry</td>
<td></td>
<td></td>
<td>white</td>
<td>white</td>
<td>white</td>
<td>white</td>
<td>white</td>
<td>white</td>
<td>white</td>
</tr>
<tr>
<td>Arbutus menziesii</td>
<td>madrone</td>
<td></td>
<td></td>
<td>white</td>
<td>white</td>
<td>white</td>
<td>white</td>
<td>white</td>
<td>white</td>
<td>white</td>
</tr>
<tr>
<td>Berberis aquifolium</td>
<td>tall Oregon grape</td>
<td></td>
<td></td>
<td>yellow</td>
<td>yellow</td>
<td>yellow</td>
<td>yellow</td>
<td>yellow</td>
<td>yellow</td>
<td>yellow</td>
</tr>
<tr>
<td>Berberis nervosa</td>
<td>dwarf Oregon grape</td>
<td></td>
<td></td>
<td>yellow</td>
<td>yellow</td>
<td>yellow</td>
<td>yellow</td>
<td>yellow</td>
<td>yellow</td>
<td>yellow</td>
</tr>
<tr>
<td>Ceanothus cuneatus</td>
<td>common buckbrush</td>
<td></td>
<td></td>
<td>white</td>
<td>white</td>
<td>white</td>
<td>white</td>
<td>white</td>
<td>white</td>
<td>white</td>
</tr>
<tr>
<td>Ceanothus integerimus</td>
<td>deerbrush</td>
<td></td>
<td></td>
<td>white to blue</td>
</tr>
<tr>
<td>Chrysolepis chrysophylla</td>
<td>chinquapin</td>
<td></td>
<td></td>
<td>yellow</td>
<td>yellow</td>
<td>yellow</td>
<td>yellow</td>
<td>yellow</td>
<td>yellow</td>
<td>yellow</td>
</tr>
<tr>
<td>Cornus nuttallii</td>
<td>Pacific dogwood</td>
<td></td>
<td></td>
<td>white</td>
<td>white</td>
<td>white</td>
<td>white</td>
<td>white</td>
<td>white</td>
<td>white</td>
</tr>
<tr>
<td>Corylus cornuta var. californica</td>
<td>California hazelnut</td>
<td></td>
<td></td>
<td>yellow</td>
<td>yellow</td>
<td>yellow</td>
<td>yellow</td>
<td>yellow</td>
<td>yellow</td>
<td>yellow</td>
</tr>
<tr>
<td>Crataegus douglasii</td>
<td>black hawthorn</td>
<td></td>
<td></td>
<td>white</td>
<td>white</td>
<td>white</td>
<td>white</td>
<td>white</td>
<td>white</td>
<td>white</td>
</tr>
<tr>
<td>Gaultheria shallon</td>
<td>salal</td>
<td></td>
<td></td>
<td>white to pink</td>
</tr>
<tr>
<td>Holodiscus discolor</td>
<td>ocean-spray</td>
<td></td>
<td></td>
<td>white</td>
<td>white</td>
<td>white</td>
<td>white</td>
<td>white</td>
<td>white</td>
<td>white</td>
</tr>
<tr>
<td>Oemleria cerasiformis</td>
<td>Indian-spray</td>
<td></td>
<td></td>
<td>greenish white</td>
</tr>
<tr>
<td>Philadelphus lewisii</td>
<td>mock orange</td>
<td></td>
<td></td>
<td>white</td>
<td>white</td>
<td>white</td>
<td>white</td>
<td>white</td>
<td>white</td>
<td>white</td>
</tr>
<tr>
<td>Quercus garryana</td>
<td>Oregon white oak</td>
<td></td>
<td></td>
<td>yellow</td>
<td>yellow</td>
<td>yellow</td>
<td>yellow</td>
<td>yellow</td>
<td>yellow</td>
<td>yellow</td>
</tr>
<tr>
<td>Quercus kelloggii</td>
<td>California black oak</td>
<td></td>
<td></td>
<td>yellow</td>
<td>yellow</td>
<td>yellow</td>
<td>yellow</td>
<td>yellow</td>
<td>yellow</td>
<td>yellow</td>
</tr>
<tr>
<td>Rosa gymnocarpa</td>
<td>baldhip rose</td>
<td></td>
<td></td>
<td>pink</td>
<td>pink</td>
<td>pink</td>
<td>pink</td>
<td>pink</td>
<td>pink</td>
<td>pink</td>
</tr>
<tr>
<td>Rubus parviflorus</td>
<td>thimbleberry</td>
<td></td>
<td></td>
<td>white</td>
<td>white</td>
<td>white</td>
<td>white</td>
<td>white</td>
<td>white</td>
<td>white</td>
</tr>
<tr>
<td>Symphoricarpos alba</td>
<td>snowberry</td>
<td></td>
<td></td>
<td>pink</td>
<td>pink</td>
<td>pink</td>
<td>pink</td>
<td>pink</td>
<td>pink</td>
<td>pink</td>
</tr>
<tr>
<td>Vaccinium parvifolium</td>
<td>red huckleberry</td>
<td></td>
<td></td>
<td>pale pink</td>
</tr>
<tr>
<td>Perennial Flowers</td>
<td></td>
</tr>
<tr>
<td>Adenocaulon bicolor</td>
<td>American trailplant</td>
<td></td>
<td></td>
<td>white</td>
<td>white</td>
<td>white</td>
<td>white</td>
<td>white</td>
<td>white</td>
<td>white</td>
</tr>
<tr>
<td>Anemone deltoidea</td>
<td>Columbian windflower</td>
<td></td>
<td></td>
<td>white</td>
<td>white</td>
<td>white</td>
<td>white</td>
<td>white</td>
<td>white</td>
<td>white</td>
</tr>
<tr>
<td>Balsamorhiza deltoidea</td>
<td>deltoid balsamroot</td>
<td></td>
<td></td>
<td>yellow</td>
<td>yellow</td>
<td>yellow</td>
<td>yellow</td>
<td>yellow</td>
<td>yellow</td>
<td>yellow</td>
</tr>
<tr>
<td>Brodiaea elegans</td>
<td>harvest brodiaea</td>
<td></td>
<td></td>
<td>yellow</td>
<td>yellow</td>
<td>yellow</td>
<td>yellow</td>
<td>yellow</td>
<td>yellow</td>
<td>yellow</td>
</tr>
</tbody>
</table>

BLOOM PERIODS

FOR THE PACIFIC LOWLAND MIXED FOREST PROVINCE
<table>
<thead>
<tr>
<th>Botanical Name</th>
<th>Common Name</th>
<th>Jan</th>
<th>Feb</th>
<th>March</th>
<th>April</th>
<th>May</th>
<th>June</th>
<th>July</th>
<th>Aug</th>
<th>Sept</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calochortus tolmiei</td>
<td>Tolmie star-tulip</td>
<td></td>
<td></td>
<td></td>
<td>white to purple or rose</td>
<td>white to purple or rose</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dicholostemma congestum</td>
<td>ookow</td>
<td></td>
<td></td>
<td></td>
<td>bluish-purple</td>
<td>bluish-purple</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dodecatheon hendersonii</td>
<td>shooting star</td>
<td>pink</td>
<td>pink</td>
<td>pink</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erythronium oregonum</td>
<td>giant fawnlily</td>
<td></td>
<td></td>
<td></td>
<td>white/ yellow base</td>
<td>white/ yellow base</td>
<td>white/ yellow base</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fragaria vesca ssp. bracteata</td>
<td>woodland strawberry</td>
<td></td>
<td></td>
<td></td>
<td>white to pink tinged</td>
<td>white to pink tinged</td>
<td>white to pink tinged</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iris tenax</td>
<td>Oregon iris</td>
<td>purple</td>
<td></td>
<td></td>
<td>purple</td>
<td>purple</td>
<td>purple</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ligusticum apioliform</td>
<td>celeryleaf licorice-root</td>
<td></td>
<td></td>
<td></td>
<td>white</td>
<td>white</td>
<td>white</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lupinus albifrons</td>
<td>silver lupine</td>
<td>bluish</td>
<td></td>
<td></td>
<td>bluish</td>
<td>bluish</td>
<td>bluish</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ranunculus occidentalis</td>
<td>western buttercup</td>
<td>yellow</td>
<td></td>
<td></td>
<td>yellow</td>
<td>yellow</td>
<td>yellow</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Satureja douglasii</td>
<td>yerba buena</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>white to pink</td>
<td>white to pink</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Synthyris reniformis</td>
<td>snowqueen</td>
<td>blue</td>
<td>blue</td>
<td>blue</td>
<td></td>
<td>blue</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tellima grandiflora</td>
<td>fringecup</td>
<td></td>
<td></td>
<td></td>
<td>greenish white to reddish</td>
<td>greenish white to reddish</td>
<td>greenish white to reddish</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trillium albidum</td>
<td>trillium</td>
<td>white to purple</td>
<td>white to purple</td>
<td>white to purple</td>
<td>white to purple</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trillium ovatum</td>
<td>trillium</td>
<td>white to purple</td>
<td>white to purple</td>
<td>white to purple</td>
<td>white to purple</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Triteleia hendersonii</td>
<td>Henderson's triteleia</td>
<td>yellowish with purple vein</td>
<td>yellowish with purple vein</td>
<td>yellowish with purple vein</td>
<td>yellowish with purple vein</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Triteleia hyacinthina</td>
<td>white brodiaea</td>
<td></td>
<td></td>
<td></td>
<td>white</td>
<td>white</td>
<td>white</td>
<td>white</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Viola sempervirens</td>
<td>redwoods violet</td>
<td>yellow</td>
<td></td>
<td></td>
<td>yellow</td>
<td>yellow</td>
<td>yellow</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zigadenus venenosus</td>
<td>meadow deathcamas</td>
<td>white to cream</td>
<td>white to cream</td>
<td>white to cream</td>
<td>white to cream</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Vines

<table>
<thead>
<tr>
<th>Botanical Name</th>
<th>Common Name</th>
<th>Jan</th>
<th>Feb</th>
<th>March</th>
<th>April</th>
<th>May</th>
<th>June</th>
<th>July</th>
<th>Aug</th>
<th>Sept</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lonicera hispidula</td>
<td>hairy honeysuckle</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rubus ursinus</td>
<td>trailing blackberry</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Whipplea modesta</td>
<td>whipple vine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

References:
The following chart lists plants that attract pollinators. It is not exhaustive, but provides guidance on where to start. Annuals, herbs, weeds, and cover crops provide food and shelter for pollinators, too.

<table>
<thead>
<tr>
<th>Botanical Name</th>
<th>Common Name</th>
<th>Color</th>
<th>Height</th>
<th>Flower Season</th>
<th>Sun</th>
<th>Soil</th>
<th>Visitation by Pollinators</th>
<th>Is a host plant. See pgs 20-21</th>
</tr>
</thead>
</table>
| **Plants that attract pollinators**

Trees & Shrubs

- **Acer spp.** maple greenish white to red < 30 March - June sun to partial shade moist, well drained bees X
- **Amelanchier alnifolia** serviceberry white 1 - 5 April - July sun to partial shade moist to dry bees, flies X
- **Arbutus menziesii** madrone white 6 - 30 April - May sun to partial shade dry bees
- **Arctostaphylos spp.** manzanita white 0.1 - 4 April - July sun to partial shade dry, well drained hummingbirds
- **Cornus nuttallii** Pacific dogwood white 1 - 30 April - June shade moist, well drained bees, beetles, flies, butterflies
- **Ribes spp.** currants/gooseberrys greenish white, white, pink, red 1 - 3 March - June sun to shade moist to dry, well drained hummingbirds
- **Sambucus spp.** elderberry white to creamy 1 - 6 May - July sun to partial shade moist to dry, well drained bees
- **Symoricarpos spp.** snowberry pink 0.5 - 2 May - August sun to shade moist, well drained bees X
- **Vaccinium spp.** huckleberry pink 0.1 - 3 April - August sun to partial shade moist to dry, well drained bees

Perennial Flowers

- **Achillea millefolium** yarrow white 0.2 - 1 April - October sun to partial shade dry bees X
- **Aquilegia formosa** Cascade columbine red 0.1 - 1 May - August partial shade to shade moist hummingbirds, bees
- **Aster spp.** daisy blue, purple, pink to white 0.1 - 1 July - Sept sun to partial shade moist to dry bees
- **Delphinium spp.** larkspur white to blue 0.1 - 0.5 April - July sun to partial shade dry bees
- **Erigeron spp.** fleabane blue, purple, pink to white 0.1 - 0.7 June - August sun to partial shade moist to dry bees, butterflies, moths
- **Eriogonum spp.** buckwheat white to yellow 0.1 - 0.5 May - August sun dry, well drained bees
<table>
<thead>
<tr>
<th>Botanical Name</th>
<th>Common Name</th>
<th>Color</th>
<th>Height</th>
<th>Flower Season</th>
<th>Sun</th>
<th>Soil</th>
<th>Visitation by Pollinators</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erythronium spp.</td>
<td>fawnlily</td>
<td>white, pink, yellow</td>
<td>0.1 - 0.3</td>
<td>March - August</td>
<td>sun to shade</td>
<td>bees</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eschscholzia californica</td>
<td>California poppy</td>
<td>yellow to orange</td>
<td>0.1 - 0.5</td>
<td>May - Sept</td>
<td>sun</td>
<td>dry, well drained</td>
<td>bees</td>
<td></td>
</tr>
<tr>
<td>Hydrophyllum spp.</td>
<td>waterleaf</td>
<td>white, blue, purple</td>
<td>0.2 - 0.8</td>
<td>April - July</td>
<td>sun to shade</td>
<td>moist</td>
<td>bees</td>
<td></td>
</tr>
<tr>
<td>Iris spp.</td>
<td>iris</td>
<td>white, yellow to purple</td>
<td>0.1 - 0.4</td>
<td>April - July</td>
<td>sun to partial shade</td>
<td>bees</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lilium spp.</td>
<td>lily</td>
<td>white to pinkish, orange</td>
<td>0.2 - 1</td>
<td>June - July</td>
<td>sun to partial shade</td>
<td>moist</td>
<td>hummingbirds</td>
<td></td>
</tr>
<tr>
<td>Lupinus spp.</td>
<td>lupine</td>
<td>blue to purple</td>
<td>0.1 - 1</td>
<td>April - August</td>
<td>sun to partial shade</td>
<td>dry to moist</td>
<td>bees</td>
<td>X</td>
</tr>
<tr>
<td>Mentha arvensis</td>
<td>mint</td>
<td>white to pink or purpleleq</td>
<td>0.2 - 0.8</td>
<td>July - Sept</td>
<td>sun to partial shade</td>
<td>moist</td>
<td>bees</td>
<td></td>
</tr>
<tr>
<td>Penstemon spp.</td>
<td>penstemon</td>
<td>white to purple or red</td>
<td>0.1 - 0.6</td>
<td>May - August</td>
<td>sun to partial shade</td>
<td>dry, well drained</td>
<td>bees</td>
<td>X</td>
</tr>
<tr>
<td>Phacelia spp.</td>
<td>scorpion weed</td>
<td>white</td>
<td>0.2 - 1</td>
<td>May - August</td>
<td>sun</td>
<td>dry, well drained</td>
<td>bees</td>
<td></td>
</tr>
<tr>
<td>Sedum spp.</td>
<td>stonecrop</td>
<td>white, pink, yellow</td>
<td>0.1 - 0.3</td>
<td>May - August</td>
<td>sun</td>
<td>dry, well drained</td>
<td>bees</td>
<td>X</td>
</tr>
<tr>
<td>Solidago spp.</td>
<td>goldenrod</td>
<td>yellow</td>
<td>0.3 - 2</td>
<td>July - October</td>
<td>sun to partial shade</td>
<td>moist</td>
<td>bees, butterflies, beetles, wasps</td>
<td>X</td>
</tr>
<tr>
<td>Trillium spp.</td>
<td>trillium</td>
<td>white to purple</td>
<td>0.1 - 0.3</td>
<td>March - June</td>
<td>partial shade to shade</td>
<td></td>
<td>beetles, flies, bees</td>
<td></td>
</tr>
</tbody>
</table>

Vines

<table>
<thead>
<tr>
<th>Botanical Name</th>
<th>Common Name</th>
<th>Color</th>
<th>Height</th>
<th>Flower Season</th>
<th>Sun</th>
<th>Soil</th>
<th>Visitation by Pollinators</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lonicera hispidula</td>
<td>hairy honeysuckle</td>
<td>pink, yellowish pink</td>
<td>< 6</td>
<td>June - August</td>
<td>partial shade to shade</td>
<td>dry to moist</td>
<td>hummingbirds</td>
<td></td>
</tr>
</tbody>
</table>

References

Compiled by Russ Holmes, U.S. Forest Service, Portland, OR, Dec 6, 2007. russellholmes@fs.fed.us 503-808-2150
HABITAT REQUIREMENTS FOR BEE-POLLINATED GARDEN FLOWERS AND CROPS

<table>
<thead>
<tr>
<th></th>
<th>Bumble</th>
<th>Digger</th>
<th>Lg Carpenter</th>
<th>Sm Carpenter</th>
<th>Squash/ Gourd</th>
<th>Leafcutter</th>
<th>Mason</th>
<th>Sweat</th>
<th>Plasterer</th>
<th>Yellow-faced</th>
<th>Andrenid</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLOWERS</td>
<td></td>
</tr>
<tr>
<td>Catalpa</td>
<td></td>
</tr>
<tr>
<td>Catnip</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clover</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Columbine</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Cow parsley</td>
<td></td>
</tr>
<tr>
<td>Goldenrod</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impatiens</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Irises</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lavender</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Milkwort</td>
<td></td>
</tr>
<tr>
<td>Morning glory</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Penstemon</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Passion flowers</td>
<td></td>
</tr>
<tr>
<td>Phacelia</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potentilla</td>
<td></td>
</tr>
<tr>
<td>Rose</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Salvia</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saxifragas</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sorrel</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Sunflowers</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Violet</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wild Mustard</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Willow catkins</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>CROPS</td>
<td></td>
</tr>
<tr>
<td>Almond</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Apple</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blueberry</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cherry</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eggplant</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gooseberry</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Legumes</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water melon</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Squash/ Pumpkins/ Gourds</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tomatoes</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Thyme</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
HABITAT AND NESTING REQUIREMENTS:

Bumble Bees:
Abandoned mouse nests, other rodent burrows, upside down flower pots, under boards, and other human-made cavities. Colonies are founded by a queen in the spring and don’t die out in the fall. New queens mate then and overwinter in a sort of hibernation. Bumble bees are usually active during the morning hours and forage at colder temperatures than honey bees, even flying in light rain.

Large carpenter bees:
Soft dead wood, poplar, cottonwood or willow trunks and limbs, structural timbers including redwood. Depending on the species, there may be one or two brood cycles per year. These bees can be active all day even in the hottest weather.

Digger bees:
Sandy soil, compacted soils, bank sides. Anthophorid bees (now in the Apidae) are usually active in the morning hours, but can be seen at other times.

Small carpenter bees:
Pithy stems including roses and blackberry canes. These bees are more active in the morning but can be found at other times.

Squash and Gourd bees:
Sandy soil, may nest in gardens (where pumpkins, squash and gourds are grown) or pathways. These bees are early risers and can be found in pumpkin patches before dawn. Males often sleep in the wilted flowers.

Leafcutter bees:
Pre-existing circular tunnels of various diameters in dead but sound wood created by emerging beetles, some nest in the ground. Leave dead limbs and trees to support not just pollinators but other wildlife. Leafcutter bees can be seen foraging throughout the day even in hot weather.

Mason bees:
Pre-existing tunnels, various diameters in dead wood made by emerging beetles, or human-made nesting substrates, drilled wood boards, paper soda straws inserted into cans attached to buildings. Mason bees are generally more active in the morning hours.

Sweat bees:
Bare ground, compacted soil, sunny areas not covered by vegetation. Like most bees, sweat bees forage for pollen earlier in the morning and then for nectar later.

Plasterer or cellophane bees:
Bare ground, banks or cliffs. Colletid bees can be active in the morning or later in the day.

Yellow-faced bees:
In dead stems. These bees are more active during morning hours.

Andrenid bees:
Sunny, bare ground, sand soil, under leaf litter or in soil in banksides and cliffs. These generally spring-active bees are most commonly seen on flowers during the morning when pollen and nectar resources are abundant.

“MONARCH BUTTERFLIES NEVER FAIL TO CATCH THE VISITOR’S EYE AND ALWAYS LEAD TO A TEACHABLE MOMENT.”

-- LOGAN LEE, PRAIRIE SUPERVISOR, MIDEWIN NATIONAL TALLGRASS PRAIRIE
A BASIC CHECKLIST

BECOME FAMILIAR WITH POLLINATORS IN YOUR LANDSCAPE.

- Watch for activity throughout the day and the seasons.
- Keep a simple notebook of when and what comes to your garden.
 NOTE: It is not necessary to identify each species when you first get started. Simply note if it is a bee that likes the yellow flower that blooms in the fall.
- Consult a local field guide or web site when you are ready to learn more details.

ADD NATIVE PLANTS TO ATTRACT MORE NATIVE POLLINATORS.

- List the plants you currently have in your landscape.
- Determine when you need additional flowers to provide nectar and pollen throughout the growing season.
- Add plants that provide additional seasons of bloom, create variable heights for shelter, and attract the types of pollinators you want.
- Don’t forget to include host plants that provide food and shelter for larval development.
- Contact your local native plant society or extension agent for more help.

USE POLLINATOR FRIENDLY LANDSCAPE PRACTICES TO SUPPORT THE POLLINATORS YOU ATTRACT.

- Use Integrated Pest Management Practices to address pest concerns.
- Tolerate a little mess – leave dead snags and leaf litter, keep areas bare for ground nesting insects, and leave some weeds that provide food for pollinators.
- Provide safe access to clean water.

NOTICE THE CHANGES THAT YOU HAVE HELPED TO CREATE!
Many books, websites, and people were consulted to gather information for this guide. Use this list as a starting point to learn more about pollinators and plants in your area.

RESOURCES

BAILEY’S ECOREGION MAPS

USDA Forest Service
http://www.fs.fed.us/land/ecosysmgmt/ecoreg1_home.html

POLLINATION/POLLINATORS

Pollinator Partnership
www.pollinator.org

Coevolution Institute
www.coevolution.org

Natural Resources Conservation Service
www.nrcs.usda.gov

North American Pollinator Protection Campaign
www.nappc.org

USDA Forest Service
www.fs.fed.us/wildflowers/pollinators/

Wild Farm Alliance
www.wildfarmalliance.org

The Xerces Society
www.xerces.org

Illinois Natural History Survey
www.inhs.uiuc.edu

NATIVE PLANTS

Plant Conservation Alliance
www.nps.gov/plants

Seeds of Success
www.nps.gov/plants/sos

Lady Bird Johnson Wildflower Center
www.wildflower.org/plants/

USDA Hardiness Zone Map
www.usna.usda/Hardzone/

U.S. National Arboretum
www.usna.usda.gov/Hardzone/ushzmap.html

USDA, NRCS. 2007. The PLANTS Database
www.plants.usda.gov, 19 July, 2007 National Plant Data Center, Baton Rouge, LA 70874-4490 USA

NATIVE BEES

National Sustainable Information Service
“Alternative Pollinators: Native Bees” by Lane Greer, NCAT Agriculture Specialist, Published 1999, ATTRA Publication #IP126
www.attra.ncat.org/attra-pub/nativebee.html

Agriculture Research Service
Plants Attractive to Native Bees table
www.ars.usda.gov/Research/docs.htm?docid=12052

BUTTERFLIES AND MOTHS

www.butterfliesandmoths.org/ (Version 07192007)

North American Butterfly Association
www.naba.org

FEEDBACK

We need your help to create better guides for other parts of North America. Please e-mail your input to feedback@pollinator.org or fax to 415-362-3070.

คำถาม: How will you use this guide?

คำถาม: Do you find the directions clear? If not, please tell us what is unclear.

คำถาม: Is there any information you feel is missing from the guide?

คำถาม: Any other comments?

THANK YOU FOR TAKING THE TIME TO HELP!
RESEARCH AND WRITING: ELIZABETH L. LEY
STEPHEN BUCHMANN, PH.D.
KATHERINE MCGUIRE
RUSSELL HOLMES

EDITORIAL: LAURIE DAVIES ADAMS
AND LARRY STRITCH, PH.D.

PRODUCTION SUPERVISION: KATHERINE MCGUIRE

DESIGN: MARGUERITE MEYER

CONCEPT REVIEW:
American Farm Bureau Federation, Ron Gaskell
Bureau of Land Management, Peggy Olwell, Carol Spurrier,
Mary Byrne, Mary Tisdale, Elizabeth Wooster
National Garden Association, Susanne DeJohn
Plant Conservation Alliance – Edward Fletcher, Jean Giblette,
Mary Ann Lawler, Ron Smith
Smithsonian Institute, Department of Botany,
Gary Krupnick, Ph.D.
USDA - CSREES, Greg Crosby, Ph.D., Leslie Gilbert, Ph.D.
USDA - Forest Service, David Pivorunas, Larry Stritch, Ph.D.
USDA - Natural Resource Conservation Service, Doug Holy,
Hilda Diaz-Soltero
USDOI - US Fish and Wildlife Service, Karen Anderson,
Don MacLean, Patricia DeAngelis, Ph.D.
USGS - Steve Hilburger, Elizabeth Sellers

PHOTO CONTRIBUTORS:
Julie Baker

ILLUSTRATIONS:
Carolyn Vibbert

For a copy of this brochure, or for another region, visit www.pollinator.org

The Pollinator Partnership™/North American Pollinator Protection Campaign
423 Washington St., 5th Floor, San Francisco, CA 94111 – 415-362-1137
www.pollinator.org www.nappc.org