Backyard Berries!

Growing Blueberries in the Home Garden

Lisa Wasko DeVetter
Associate Professor, Horticulture
Online Resource
https://smallfruits.wsu.edu/

Small Fruit Horticulture Research & Extension Program
MOUNT VERNON NORTHWESTERN WASHINGTON RESEARCH AND EXTENSION CENTER

Welcome to the WSU Small Fruit Horticulture (SFH) program!

The focus of the SFH program is whole-plant physiology of small fruit crops in response to environmental stress and cultural practices.

View Information by Crop
High Bush Blueberry

Email: lisa.devetter@wsu.edu
Blueberry is a True Native Fruit

Distribution of V. corymbosum

Cranberry is also native!
Blueberry - Genus Vaccinium

Family – Ericaceae
- Northern highbush (V. corymbosum)
- Lowbush (V. angustifolium)
- Half-high (V. corymbosum × V. angustifolium)
- Southern highbush (V. darrowii and others) → Evergreen for “low chill” environments
- Rabbiteye (V. virgatum)
Northern Highbush Blueberry – Vaccinium corymbosum

- Deciduous, perennial shrub native to North America
- Shallow rooted with no root hairs (mycorrhizal)
- Crown forming
- Fresh and processed
- 6-8 years to reach full production
- Long lived (40-50 years)
- 5-10 ft tall at maturity
- High chill
Lowbush Blueberry – *V. angustifolium*

- “Wild” blueberry
- Managed stands in Maine and eastern Canada
- Deciduous, twiggy shrub
- **Rhizomatous**, also with mycorrhizae
- Burning and/or mowing in alternate years for **rejuvenation**
- Processed market

Images: iimpters and Audubon
Half-High Highbush Blueberry

V. corymbosum X V. angustifolium

- Cross between **high and low bush** types
- Much like northern highbush, but shorter
- Less **productive** than highbush
- Can be grown in **containers** or as **ornamentals**
- Planting can last 30+ years
- 1½ - 4 ft tall at maturity
- **High chill**
Southern Highbush Blueberry

- Hybrids of *V. darrowii* and others
- Developed for **low-chill areas** with warmer and dryer summers (e.g., central CA)
- Cross-pollination recommended
- **Not recommended for PNW**

Images: Oregon Blueberry Farms and Nursery
Blueberry Domestication Timeline

- Blueberry was harvested from the **wild** prior to domestication
- Native Americans used them as a **medicine** and for **flavoring**
- 1983 – **Elizabeth White** noted their potential as an agricultural crop
- 1908 – USDA botanist, **Frederick Coville**, began selecting wild plants for breeding
- 1910 – Coville discovered blueberries grow best in **acidic** soil conditions and published his research
- 1911 – White began **on-farm collaborations** with Coville after reading *Experiments in Blueberries*

Source: https://www.blueberrycouncil.org/about-blueberries/history-of-blueberries/
Blueberry Domestication Timeline

- 1916 – White and Coville’s sold the first commercial crop in Whitesbog, NJ
- 1932 – NJ presents White with “outstanding contribution to agriculture” award
- 1942-1962 – >200,000 seedlings planted across 13 states
- 1974 – USDA announces July as National Blueberry Month
- 1990s – Research on blueberry antioxidant activity begins
- 2000s – Scientific research on blueberry health attributes published
- 2012 – Blueberries found in 4,000 products (food, pet food, and cosmetics)
- 2016 – 100th anniversary of highbush blueberries

Source: https://www.blueberrycouncil.org/about-blueberries/history-of-blueberries/
Blueberry’s Early Days

Images: http://www.scc.rutgers.edu/njwomenshistory/Period_4_white.htm (top left) and Historic Whitesbog Village/Whitesbog Preservation Trust (right two).
Blueberries in Washington

- **Leading national producer**
 - 163 million pounds harvested from 16,700 acres in 2019
 - ~24% of national production
 - 70% of processed market

- **Lead national organic production**
 - 4.7 million pounds harvested from 1,400 certified acres in 2011
 - ~50% of national production

Source: NASS 2012, 2015, 2020
Understanding Plant Growth and Development
Growth and Development - Shoots

- **Crown** – part of a perennial plant where roots and stems/canes emerge; at ground level
- **Canes** – large, primary stems that arise from crown
- Two main types of shoots
- Vegetative growth occurs in **flushes**
Two shoot types:

- **Laterals** – develop from vegetative buds on 1-year-old wood (last year’s growth)
- **Whips** – arise from latent buds on older wood at the base of the crown or higher up on the bush; vigorous and arrive after lateral shoots
Growth and Development - Buds

- Two types of buds on laterals:
 1) **Fruiting/floral**
 2) **Vegetative**

- Bud development initiated mid-summer and fall (when days are **shorter** and **cooler**)

Diagram: U.Maine
Growth and Development - Roots

- **Shallow rooted** (most within first 18 inches of soil)
- Not very extensive (within 1 ft from the crown), but depends on soil type
- No root hairs!
- Very fine roots (75% of roots are 30-50 μm in diameter)
- Fine roots associate with **ericoid mycorrhizae**
- Thicker roots important for anchorage, storage, and transport

Image: Strik, 2007
Planting

- **Late April-May or Aug.-Sept.** are good times to plant
- Space plants ~ 3 feet apart
- Dig holes **large enough** to accommodate all the roots and deep enough so you can cover the uppermost roots with 3 to 4 inches of soil (**but don’t bury the crown!**)
- **Break up the root ball!**
- Pack the soil firmly around the roots
- **Mulch**
- **Irrigate thoroughly, frequently, and deeply**
Pollination
Pollination is Transfer of Pollen

- Pollination is the transfer of pollen from the male anther of a flower to the female stigma.
- Adequate fruit set and berry development in blueberry relies on good pollination.
- Ensure you have pollinators in the landscape.
- Cross-pollination beneficial for most cultivars.

Photo: Arrington, 2016
Honey Bees are the Primary Pollinators for Cultivated Blueberry

- **Honey bees** *(Apis mellifera)* are the primary pollinators in agriculture, pollinating over 130 crops.

- **Italian** *(ligustica)* honey bee is the most commercially used sub-species.

- **Weakness** of *ligustica* includes poor foraging at temperatures below 55 °F, with moderate winds (~12 mph), and with precipitation.
Fruit is a **berry**

Bloom – powdery epicuticular wax

Fruit develop within 2-3 months post pollination

Irrigation important during **filling** for **size** and **flavor**

Flavor concentrated in **skin**; differs by cultivar

Mature bush can yield up to 20 lbs/bush
Development of Fruit Quality

Timing of harvest critical for optimal quality
Harvesting and Postharvest Care for Optimal Fruit Quality

- **Proper harvest time and interval (7-11 days)**
- **Reduce drop heights** (no more than 6 inches) during harvest and postharvest
- **Avoid compressing** fruit
- **Cool quickly!**
- **Always follow food safety guidelines**
Blueberry Break!
Washington Blueberries

WaGrown Blueberries S3E2: Samson Farms

https://youtu.be/z1rWzP6lekJY
Nutrient Management
Plant Nutrients – A Review

- Goal of **fertilization** is to remove nutrient limitations (and make sure nothing is in excess)
- A nutrient is **essential** if it is needed for a plant to grow properly (and be productive)
- **Macronutrients** – needed in large quantities
- **Micronutrients** – needed in small quantities
Good nutrient management is essential for successful blueberry production.

Blueberries are adapted to acidic soil conditions.

Goal is to lower and maintain soil pH = 4.2 – 5.5.

Blueberry takes up predominately ammonium nitrogen (not nitrate).

High organic matter (≥ 3%) promotes good growth.

Blueberry is sensitive to amendments with high salt content and pH.

Important to modify soil pH and organic matter pre-plant.
Pre-Plant Considerations

- Air and water drainage
- Access to quality irrigation water and ability to irrigate
- Adequate soil pH and organic matter→ soil test!
Recommended Soil Sufficiency Levels*

<table>
<thead>
<tr>
<th>Nutrient</th>
<th>Range (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phosphorus (Bray P)</td>
<td>25-40</td>
</tr>
<tr>
<td>Phosphorus (Olsen)</td>
<td>10-20</td>
</tr>
<tr>
<td>Potassium (K)</td>
<td>100-150</td>
</tr>
<tr>
<td>Calcium (Ca)</td>
<td>1,000</td>
</tr>
<tr>
<td>Magnesium (Mg)</td>
<td>60</td>
</tr>
<tr>
<td>Manganese (Mn)</td>
<td>20-60</td>
</tr>
<tr>
<td>Boron (B)</td>
<td>0.5-1.0</td>
</tr>
</tbody>
</table>

*Repurposed from Strik and Bryla, 2015.

NOTE
- **Target pH is 4.2 to 5.5**
- EC should be less than 2 dS/m
- Not advised to use soil tests to predict nitrogen availability
Pre-Plant Considerations – Organic Matter

- Pre-plant incorporation of **Douglas fir sawdust** beneficial for **heavier soils**
- **Avoid** animal-based manures, cedar, oak, walnut, or any other sawdust
- **Application:**
 - 3.5 inches of sawdust in 3-foot-wide strips on 10-foot centers (~19 units/acre)
 - Add 5 lb N/unit of sawdust (~95 lb N/acre)
 - Incorporate to a depth of 10 inches
Acidifying Soils

- **Target pH is 4.2 to 5.5**
- If soil pH is above this range, need to apply an acid → **elemental sulfur (S°)**
- Amount of acid to apply depends on **initial pH**, **cation exchange capacity (CEC)**, and **free lime (residual carbonates)**
- Acidification takes time…
- Pre-plant is also a good time to apply **organic matter** (e.g. Douglas fir sawdust, orchard wood chips, peat moss, etc.)
- **Acidified irrigation water** for post plant pH management and alkaline water
- **Resources can help guide acidification**
Acidifying Soils

ACIDIFYING SOIL FOR CROP PRODUCTION
WEST OF THE CASCADE MOUNTAINS
(WESTERN OREGON AND WASHINGTON)

D. Horwick, J. Hart, R. Stavros, S. Petrie, and J. Alland

Soil acidification sometimes is necessary for optimum plant growth west of the Cascade Mountain Range. Commercial producers of blueberries, azaleas, rhododendrons, and other ornamentals may need to reduce soil pH for optimum production.

Soil acidification is best performed prior to planting; it is more difficult in established plantings. No routine soil test is available to determine soil acidification amendment rates. This publication is intended to provide guidelines for acidification of commercial fields. It is not intended for use with container-grown ornamentals.

Crop soil pH requirements

Table 1 lists optimum soil pH for selected crops grown in western Washington and Oregon. Soils in this region are naturally acidic. For most crops, aiming to raise soil pH, rather than soil acidification, is needed. Blueberries and nursery crops such as azaleas and rhododendrons are exceptions. These "acid-loving" plants require a soil pH less than 6.0 and preferably below 5.5. Cultivation of these crops usually is the only reason to consider soil acidification west of the Cascade Mountain Range. Acidification of soil for production of these crops is common.

Plant symptoms when soil pH is too high

Plants are excellent indicators of the need for soil acidification. Several symptoms are exhibited when soil pH is too high. A common symptom is yellowing (chlorosis) of leaves, with prominent, contrasting green veins (Figure 1). Leaves may be smaller than normal, and leaf edges may be brown (Figure 2). Symptoms are observed

Table 1—Optimum soil pH range for selected crops.*

<table>
<thead>
<tr>
<th>Crop</th>
<th>pH Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alfalfa</td>
<td>6.5–8.4</td>
</tr>
<tr>
<td>Vegetables</td>
<td>6.5–8.2</td>
</tr>
<tr>
<td>Garlic</td>
<td>6.5–7.5</td>
</tr>
<tr>
<td>Grass for seed or pastures</td>
<td>5.5–8.2</td>
</tr>
<tr>
<td>Fruit trees</td>
<td>6.0–8.0</td>
</tr>
<tr>
<td>Highbush blueberries and cranberries</td>
<td>4.5–5.5</td>
</tr>
<tr>
<td>Rabbit-eye blueberries</td>
<td>4.2–5.0</td>
</tr>
<tr>
<td>Azaleas and rhododendrons</td>
<td>4.5–5.5</td>
</tr>
<tr>
<td>Field or silage corn</td>
<td>5.5–8.4</td>
</tr>
<tr>
<td>Wheat</td>
<td>5.5–8.4</td>
</tr>
</tbody>
</table>

*Soil pH determined in 1:2 soil:water ratio.

Donald Horwick, Extension agronomist, Oregon State University; John Hart, Extension soil scientist, Oregon State University; Robert Stavros, Extension soil scientist, Washington State University; Steven Petrie, superintendent, Columbia Basin Agricultural Research Center, Oregon State University; and James Alland, Extension faculty (nursery crops), North Willamette Research and Extension Center, Oregon State University.

OREGON STATE UNIVERSITY
EXTENSION SERVICE
Nitrogen Fertility

- **Remember** - blueberry is adapted to use the ammonium \((\text{NH}_4)\) form of nitrogen [not nitrate \((\text{NO}_3)\)]
- **Use ammonium or ammonium-forming fertilizers**
- **Apply annually based on tissue tests and/or field observations**
- **Symptoms of deficiency** – *poor growth*, chlorosis (yellowing), and *leaf reddening*
- **Don’t apply excessive N fertilizer**
 - Too much N can cause *excessive vigor* at the cost of fruit production and quality
Timing of Nitrogen Application

- Nitrogen fertilizer uptake begins at **bloom** and extends through **harvest**
- Start applications **early (5-10%) bloom** and continue through mid-June to mid-July

- For **dry/granular fertilizers**, **divide total rate into thirds** and apply:
 1) Late April to early May
 2) Mid May to late May
 3) Mid June
Fertigation of Nitrogen

- Start applications at 5-10% bloom and continue until start of harvest
- Apply once every two weeks to weekly
- Place lines close to soil (under mulch)

Image: D. Bryla
Fertigation of Nitrogen

Place lines close to soil (under mulch)
Rates of Nitrogen Application (lb N/acre of highbush)

<table>
<thead>
<tr>
<th>Year</th>
<th>Fertigation</th>
<th>Granular/dry Fertilizers**</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>90*</td>
<td>25 – 40†</td>
</tr>
<tr>
<td>2</td>
<td>90</td>
<td>40 – 50†</td>
</tr>
<tr>
<td>3</td>
<td>60</td>
<td>50 – 60</td>
</tr>
<tr>
<td>4</td>
<td>70</td>
<td>55 – 65</td>
</tr>
<tr>
<td>5</td>
<td>75</td>
<td>65 – 75</td>
</tr>
<tr>
<td>6</td>
<td>85</td>
<td>80 – 100</td>
</tr>
<tr>
<td>7</td>
<td>95</td>
<td>90 – 120</td>
</tr>
<tr>
<td>8+</td>
<td>100 – 150</td>
<td>100 – 140</td>
</tr>
</tbody>
</table>

*Based on Strik and Bryla (2015).

**Modified from Hart et al. (2006) for field w/out surface mulch and assumes in-row spacing of 2.5 to 3 ft. If sawdust mulch is used, add 25 lbs N/acre during years when mulch is reapplied.

†Assumes application by hand.

Half-high blueberries require less!
Caution Using Composts in Blueberry

- **Animal-based composts** tend to be high in salt content, electrical conductivity (EC), and pH*
- **Goal is to keep compost pH < 6** (acidification may be required)

Some Organic Fertilizer Options

Organic nitrogen sources*

- Fish emulsion (4-0-2)
- WISErg™ (3-2-2)
- Blood meal (14-0-0)
- Feather meal (13/14-0-0)
- Soy protein hydrolysate

- Apply dry-based products 2-weeks before bloom to allow for mineralization
- pH should be <pH 6.0, EC < 4 dS/m (with the saturated media extract method), and K should be < 0.7% (dry weight basis)

*Products listed above are not endorsed by WSU
Mulching

- Blueberries benefit from mulch applications
- Apply 2-3 inches of mulch around plants
- Suitable mulch materials include **Douglas-fir sawdust, untreated orchard wood chips, weed fabrics** ("weed mat"), etc.
- May need **additional nitrogen** (~25%) when using sawdust mulch due to nitrogen tie-up
Blueberries have **shallow roots** and need **regular irrigation**

Irrigate **new plants** frequently and deeply

Mature plants require 1.5-3 inches of water per week

Wet soil to ½-1 ft deep

No standing water!

Adjust for **soil type**

Avoid overhead irrigation

Double drip with ½-gallon emitters spaced every 18 inches under mulch ideal

Images: B. Strik
Cultivar Selection
- **Cultivar** is a “cultivated variety” (e.g. ‘Honeycrisp’)
- Successful cultivars need to be:
 - **Climatically adapted** (cold hardiness, growing degree days, and chilling requirement)
 - Adapted to **soil conditions**
 - Tolerant to key **pests or diseases**
 - Adequately **pollinated**
 - Suitable **maturity/harvest** date
 - Does the fruit characteristics meet your **needs**?
‘Duke’ and ‘Draper’ are most widely grown at a commercial levels, but still have challenges…
<table>
<thead>
<tr>
<th>Cultivar</th>
<th>Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Earliblue</td>
<td>Medium-to-large fruit, aromatic flavor, early, vigorous, erect, medium yield potential</td>
</tr>
<tr>
<td>Spartan</td>
<td>Large fruit, late bloom (avoids frost), but early ripening, vigorous, erect, does not tolerate heavy soils, concentrated ripening, medium-to-high yield potential</td>
</tr>
<tr>
<td>Patriot</td>
<td>Large fruit, more acidic, “red back”, concentrated ripening, small plants (<4 ft), adaptable to heavy soils and cold, sensitive to bacterial blight, nice fall foliage, medium yield potential</td>
</tr>
<tr>
<td>Toro</td>
<td>Very large fruit, good flavor, stocky and spreading, slower to establish, sensitive to root rots, high-to-very-high yield potential</td>
</tr>
<tr>
<td>Olympia</td>
<td>Medium fruit, sweet, vigorous and spreading plant, medium yield potential</td>
</tr>
<tr>
<td>Bluecrop</td>
<td>Medium-to-large fruit, classic flavor, susceptible to “red back” and tartness, vigorous and upright, need to prune correctly, medium-to-high yield potential</td>
</tr>
<tr>
<td>Jersey</td>
<td>Small fruit, classic flavor, large and spreading plants, “heirloom”, medium yield potential</td>
</tr>
<tr>
<td>Chandler</td>
<td>Large fruit (with good pruning), good flavor, long ripening window, medium sized plants, sensitive to bacterial blight, medium-to-high yield potential</td>
</tr>
</tbody>
</table>
Timing of Fruit Production

Caution! Late-season cultivars may have greater SWD infestations.

Figure 1. Approximate fruiting season of highbush and rabbiteye blueberry cultivars at the OSU North Willamette Research and Extension Center, Aurora, OR.

Bars represent harvest season for 5% to 95% of total yield. Cultivars are sorted by the date at which 50% percent of total yield has been harvested.

Ripening time can vary with year (weather) and cultural practices.
Plant Problems!

https://pnwhandbooks.org/

WSU Puyallup Plant & Insect Diagnostic Laboratory

A Note to Clients during COVID-19

Updated 9/30/2020: Due to COVID-19 management strategies, the WSU Puyallup Plant and Insect Diagnostic Lab will be modifying operating procedures as follows:

WSU Extension has announced that WSU Research & Extension Centers and other Extension locations are CLOSED to public entry but that WSU is committed to continuing its work.

DIGITAL MEANS
The lab is encouraging the use digital means for diagnostic purposes when practical.

- Please email jennyglass@wsu.edu clear photos of the damaged plant or the insect.
- For plant problems, images showing the plant in the landscape often provide additional clues as to the cause of the problem.

https://puyallup.wsu.edu/plantclinic/
Diseases – Mummy Berry

Monilinia vaccinii-corymbosi

- One of most problematic diseases in PNW
- **Primary infection** from overwintering “mummies” (apothecia)
- **Secondary infection** aided by *pollinators*, wind, and rain
- Manage with *sanitation, fungicides*, and/or *disrupt* spore dispersal

Images: OSU, Florence, and Haywood Photography, 2005
Diseases – Mummy Berry

Monilinia vaccinii-corymbosi

Diagram: WSU Extension
Cultural Management of Mummy Berry

- **Resistant cultivars**: Bluejay, Bluetta, and Olympia
- **Avoid very susceptible cultivars**: Blueray, Berkeley, Earliblue, and Northland
- **Bury mummies** through mulch or cultivation
- **Sanitation** – remove infested fruit

Images: Pscheidt, 2010 (top) and 2019 (bottom)
Other Diseases

- Botrytis blight (*Botrytis cinerea*)
- Shock virus
Spotted wing drosophila (SWD; *Drosophila suzukii*)

- Monitor populations
- Pick frequently and cool
- Sanitation
- Prune for open and aerated plant canopy
- Exclusion netting

- **Spinosads** can provide 90-100% control and 5-7 days residual activity
 - Some formulations approved for organic
 - **Always read and follow the label!**
Spotted Wing Drosophila (SWD) Monitoring, Identifying, and Fruit Sampling

Introduction

Spotted wing drosophila (SWD, Drosophila suzukii) is a soft fruit pest, originating in Asia, and is in the same genus as other species commonly known as vinegar flies. SWD was discovered in California in 2008 and in Washington and Oregon in 2009. SWD are distinguished from other vinegar flies in that they lay their eggs in undamaged fruit still attached to plants. SWD can quickly destroy soft fruit such as blueberry, raspberry, strawberry, plum, peach, and cherry due to larva feeding inside the fruit. SWD have a rapid reproductive cycle, and depending on environmental conditions, 4-10 generations can hatch each year in the Northwest.

Commercial and home fruit growers are encouraged to monitor SWD starting just before fruit begins to ripen and to apply control sprays when the first SWD are found in the monitoring traps or when there are local reports of SWD found in the area. For updates on local SWD findings, refer to the distribution maps.

This fact sheet describes how to make a monitoring trap, how to sample fruit, and how to identify SWD. For more information on SWD, including its biology, life cycle, and control, refer to websites in Washington (http://extension.wsu.edu/ENTOMOLOGY/posts/SWD.html) and http://extension.wsu.edu/swd/Pages/treefruitLinks.aspx) and Oregon (http://swd.HORT.oregonstate.edu/).

Monitoring Traps

Traps for monitoring SWD can easily be made at home:

- Use a clear plastic cup or deli container. A 16 oz plastic cup is ideal.
- Drill or punch 7-10 holes measuring 1/8 to 3/16-inch around the top edge of the cup (Figure 1a); flies will enter the trap through these holes. Leave a 3-inch section on one side of the container to pour out unused vinegar.
- Add 1 inch of pure apple cider vinegar (not artificially flavored).
- Add 1-2 drops of unscented dish soap.
- Snap the lid in place and fasten tape over any openings in the lid to keep rainwater out.

Figure 1. A clear plastic drinking cup with holes punched in the top (a) and placed in raspberry (b), strawberry (c), and cherry (d) plantings as a SWD trap.

Set the traps in place to monitor SWD before fruit begins to ripen.

Cranberries and Blueberries: Hang the trap on a plant, stake, or trellis 3-5 ft above the ground within the shaded, cooler side of the plant canopy (Figure 1b).

Strawberries: Place the trap on the ground or elevated slightly above the canopy on a stake within the strawberry row (Figure 1c).

Tree Fruits: Hang the trap within easy reach or at eye level on the shady side of a tree (Figure 1d).

Place 1 trap in each crop or 1 trap per acre for large plantings. Entrance holes should be clear of leaves and fruit to allow easy entry by flies. Check traps for flies and replace vinegar weekly. Do not pour the vinegar from the trap on the ground; as it can attract SWD and affect trap results. Remove the vinegar from the field and dispose elsewhere. Fill the trap container over a fine screen or coffee drip filter placed in a hand-held colander (Figure 2) and examine with the naked eye.
Pruning

Objectives

- Balance *vegetative* and *reproductive* growth
- Remove *unwanted* growth
- Open canopy for adequate light penetration and air circulation

- Annual pruning is essential for a healthy and productive planting!
“A Grower's Guide to Pruning Highbush Blueberries” by Oregon State University

Link: https://media.oregonstate.edu/media/t/0_05v1qew6

A great video resource!
Enjoy your blueberries!

Highbush Blueberry

Highbush blueberry (Vaccinium corymbosum) is a woody perennial shrub that is a member of the heath, or Ericaceae, family. One unique feature of plants within this botanical family is that they require acidic soil conditions with pH ranges between 4 to 5 units. Other members in this plant family include lowbush blueberry, cranberry, huckleberry, rhododendrons, azalea, and heather. These shallow-rooted crops require specific conditions for successful production. Please review the information below to learn more about successful production of blueberry.
Organic & Sustainable Agriculture at WSU Everett

1. Four-year WSU agriculture degree in western WA.
2. Save $$$ - complete the first two years at a regional community college.
3. Hands-on experience through a series of internships.
4. Individual mentorship with a higher instructor to student ratio.

Nannette McGrath
Academic Advisor and Recruiter
nannette.mcgrath@wsu.edu
Thank you!
Any questions?

Lisa Wasko DeVetter, PhD
Associate Professor of Small Fruit Horticulture
Washington State University NWREC
Website: http://smallfruits.wsu.edu/
Email: lisa.devetter@wsu.edu