Oak Knoll Aeration and Over-Seeding Trial 2019

Table 1. Mean ± standard deviations (SD) for aeration treatments

Observation	No aeration	With aeration	p^1
Forage quality			
Dry weight (lbs./acre)	4874 ± 672	4532 ± 420	0.258
Crude protein, %	-	-	-
Without over-seeding	7.0 ± 0.7	7.6 ± 0.5	0.209
With over-seeding	6.9 ± 0.5	6.3 ± 0.3	0.098
Relative feed value	109 ± 4	111 ± 8	0.472
Pasture composition			
Bare ground, %	0	1 ± 2	NA
Litter cover, %	7 ± 1	7 ± 5	NA
Grass cover, %	94 ± 4	94 ± 6	0.888
Legume cover, %	16 ± 9	11 ± 6	0.256
Soil characteristics			
Infiltration T2, seconds	74 ± 39	64 ± 32	0.622
Penetration, depth (cm)	29 ± 3	27 ± 3	0.216
Soil organic matter, %	5.5 ± 1.2	6.1 ± 1.2	0.338

Table 2. Mean ± standard deviations (SD) for over-seeding treatments

Observation	No over-seeding	With over-seeding	$oldsymbol{ ho}^1$
Forage quality			
Dry weight (lbs./acre)	4742 ± 596	4664 ± 580	0.801
Crude protein, %	-	-	-
Without aeration	6.9 ± 0.7	6.9 ± 0.5	0.919
With aeration	7.6 ± 0.5	6.3 ± 0.3	0.007
Relative feed value	111 ± 5	108 ± 7	0.334
Pasture composition			
Bare ground, %	1 ± 1	1 ± 1	NA
Litter cover, %	6 ± 2	8 ± 5	NA
Grass cover, %	93 ± 3	95 ± 6	0.421
Legume cover, %	12 ± 10	14 ± 6	0.669
Soil characteristics			
Infiltration T2, seconds	93 ± 28	45 ± 22	0.003
Penetration, depth (cm)	27 ± 4	29 ± 2	0.114
Soil organic matter, %	5.5 ± 1.0	6.2 ± 1.3	0.317

¹The probability value associated with the treatment in the analysis of variance. For observations where a significant treatment effect ($p \le 0.05$) was indicated, values are highlighted in bold. Values that are not available are indicated as NA.

Trial Methods

Fall 2017 - Aerated

5/7/18 – Over-seeded with Birds Foot Trefoil at 15 lbs per acre

7/13/18 - Sampled forage biomass and quality

9/11/18 - Sampled soil quality

Fall 2018 - Aerated

6/14/19 - Sampled forage biomass and quality

9/18/19 - Sampled soil quality

For more information please contact Brook Brouwer at brook.brouwer@wsu.edu.

This research trial was conducted in collaboration with Adam Greene and Sarah Pope of Oak Knoll Farm, Friday Harbor, WA.

This material is based upon work that is supported by the National Institute of Food and Agriculture, U.S. Department of Agriculture, under award number 2017-38640-26913 the Western Sustainable Agriculture Research and Education program under subaward number FW18-021. USDA is an equal opportunity employer and service provider. Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the view of the U.S. Department of Agriculture.