R COOKBOOK -TIDY DATA IN R

Robbie Stancil — CISER GRA

Session Info

oToday we'll discuss tidying and manipulating entire
data sets R

-Want to learn even more?¢ Join in on another
session:

03/24 — Data Visualization using ggplot2
o3/31 — Reproducible Reports using RMarkdown

oHave questionse Feel free to interrupt and ask!

Defining Tidy Data

o|n Tidy Data:

1. Every column is a variable
2. Every row is an observation
3. Every Cellis a single value

https://cran.r-project.org/web/packages/tidyr/vignettes/tidy-data.himl

Presenter
Presentation Notes
Since today’s session is all about tidying and working with data in R I’d like to start off by discussing what tidy data looks like.

One way of defining tidy data is by laying out a structure to follow. A generally agreed upon structure is that in tidy data every column should represent a variable. This means that each column should contain different recordings or measurements. Every row should be an observation. For example, if you’re studying individuals in an experiment each row should be a subject. Finally, every cell is a single value. This just means that each cell only contains one recorded value.

Examples of non-tidy data could be things such as column headers containing values instead of variable names, having multiple variables within a single column, or a single observational unit being stored in multiple tables.

For more information about tidy data see the link here. The author goes into detail about defining tidy data as well as converting non-tidy data to be cleaner and easier to work with.

Tidyverse

o Collection of 8 main packages designed for data science
iIncluding dplyr, tibble, and more

o Expands on the default data frame structure in R
o Provides alternative ways to manipulate and work with data

hitps://www.tidyverse.org/

Presenter
Presentation Notes
Today we’ll be using a collection of packages called tidyverse.

Tidyverse is a self-proclaimed opinionated collection of R packages that are designed for data science. The included packages contain similar design philosophies, grammar, and data structures. Important packages included that we will be working with are dplyr and tibble.

Tidyverse is meant to expand on the default data frame structure in R. It gives us alternative ways to manipulate and work with data through data tables.

For more information about what tidyverse contains and how it works you can check out their website listed here.

Installing Tidyverse

oMethod 1:

Tools Help

Install Packages...
Check for Package Updates...

r

Install Packages

Install from: ?! Configuring Repositories

Repository (CRAN) r

Packages (separate multiple with space or comma):

tidyverse

Install to Librany:
C:/Users/F.obbie/Documents/Riwin-library/3.6 [Default] v

| Install dependencies

Install Cance

:Method 2:

Presenter
Presentation Notes
Before we can get started, we first need to install the tidyverse package.

There are two ways to approach this. The first method listed here is through using the Rstudio interface. You can click tools -> install packages to get a package installation window to pop up. Here you can type in tidyverse as the package to install and press install.

You can also install packages through code. This can be done either in a script file or in the console window by typing install.packages(‘tidyverse’)

Preparing RStudio

olmport the fidyverse package

library(tidyverse

data("iris’

oLoad our data

> summary(iris)
Sepal.Length Sepal.Width Petal.Length Petal.Width
Min. 4,300 Min. :2.000 Min. :1.000 Min. :0.100
1st Qu.:5.100 1st Qu.:2.800 1st Qu.:1.600 1st Qu.:0.300
Median :5.800 Median :3.000 Median :4.350 Median :1.300
Mean :5.843 Mean :3.057 Mean -:3.758 Mean :1.199
3 5 1
[6 2

3rd Qu.:6.400 3rd Qu.:

Max. :7.900 Max.
Species

setosa -50

versicolor:50

virginica :50

.300 3rd Qu.:5.100 3rd Qu.:1.800
.400 Max. .900 Max. .500

Presenter
Presentation Notes
Now that we have tidyverse installed, let’s prepare our RStudio project.

All we need to do to set up our project is to import the package we just installed. We can do this by just typing library then the name of the package, tidyverse.

We’ll be using a built in data set called iris this week. This data contains classifications of different iris plants. Measurements include the sepal length and width as well as the petal length and width. Also included is type of iris plant. This column can take on three different values, setosa, versicolour, and virginica.

We can take a peak into this data by using some of the functions we learned about last week such as the summary function. By doing this we can get a quick overview of the structure of the data. We see some summary statistics of the four measurements and can see the breakdown of the species column. Since This species column is categorical it shows the number of occurrences of each classification.

Pipe Operator

°%>% (keyboard shortcut Cirl+Shift+M)

o Allows you to take the output from one function and
0Ass it To another function

oSimplifies code and improves flow and readability

Presenter
Presentation Notes
One of the big things that the tidyverse package gives us access to is also one of the most confusing things. This is the pipe operator. This operator is represented by a percentage sign, a greater than sign, then a percentage sign. I believe the keyboard shortcut for this is control-shift-M on windows or command-shift-M on mac though I usually just type it out.

The pipe is used to take the output from one function and pass it to another function. It essentially lets you chain together a lot of code back-to-back.

Using the pipe operator helps simplify your code and can improve the flow and readability of your code. Being able to keep your code clean can help others understand what you’re doing and also help make diagnosing any issues you encounter easier.

Advantages of Piping

vec < c¢(1, 2, 3, 2, 1)

° I—ine by ”ne GpprOOCh: vecSum < sum(vec)

vecSqrt < sqrt(vecSum)

oNested OpprOOCh: vecSqrt < sqrt(sum(c(1, 2, 3, 2, 1)))

OPipiﬂg approach: vecsqrt < c(1, 2, 3, 2, 1) %>% sum %>% sqrt

Presenter
Presentation Notes
Let’s look at why using the pipe operator can be useful. Let’s say that for some reason we want to have some code that creates a vector, calculates the sum of the vector, then takes the square root of the sum.

There are a few ways to do this. One way is by writing out these steps line by line. This means first creating our vector and storing it then taking the sum of the vector and storing it. Finally, we can take the square root of that sum and we have our desired result. This will work fine but we are potentially wasting memory and computation time by constantly storing the result at each step.

An alternative approach is to nest all of these functions together. This helps alleviate some of the problems mentioned like constantly storing the result of each step. However, this can introduce some problems with readability of your code. The more functions that you nest like this the harder it can be to tell what is going on in your code. You’re also looking at the ordering of the functions backwards. The first step starts in the middle instead of at the beginning. This is where piping comes in.

Using the pipe operator, we can start with creating our vector and then perform each step in order from left to right. This can help make our calculations easier to follow. We can also separate each step on its own line by putting a line break after each pipe. This can further improve readability.

The reason I’m discussing this is that some of the functions we’ll be using with tidyverse rely on calling multiple functions and chaining them together. Being able to keep your code as simple as possible can help make it easier to write and even explain which can save a lot of headache.

select()

oSelect columns from the data

o|lnput: our data frame and a list of columns we want

select(iris, Sepal.Length, Sepal. Wldth Spec1es

iris %>% select(Seg

Speciles
setosa
setosa
setosa
setosa

Presenter
Presentation Notes
Alright, now that we’ve gone over installing the packages, loading in the data, and a quick introduction to the pip operator, let’s start looking at the functions we have access to.

The first function we’ll discuss is the select method. This is a simple function that allows us to select specific columns from the data frame. We pass this function the data frame we want to examine and the columns that we would like returned.

The first line of code here shows how to do this using the standard function notation in R while the second shows how to do this using piping. From this point on I’ll only use the piping method as it will help make things a bit easier to follow when we start to chain together our functions.

Both of these lines of code will return just the sepal length, sepal width, and species columns from our iris data. This is an easy way to limit the columns that you are working with to simplify your data and reduce the amount you are storing in the event that certain columns aren’t going to be used.

Something important to note here is that these functions do not overwrite our data frame. What this means is that if we want to store the results from something like this select statement, we will need to save it ourselves. We can do this by assigning it to a new variable or even assigning it to the old variable to replace the iris data with this new data frame. I won’t be doing this here but it’s just something to keep in mind.

filter()

oOnly display rows that meet some requirement(s)

o|nput: our data frame and a relational expression
o Examples: >, <, >=, <=, ==, I=, is.nq()

iris %>% filter(Species — 'setosa')

iris %>% filter(Sepal.Length < 5, Sepal.wWidth = 3)

Presenter
Presentation Notes
The next function that we’ll discuss is the filter function. This is a method that allows us to choose the rows that are displayed based on any requirements we have.

This function takes our data frame as input as well as a relational expression. This is something that returns either true or false given certain conditions. Basically, we provide a column name to filter on and then some requirement for the values in this column. These can be the column having a value greater than, less than, greater than or equal to, less than or equal to, equal to, or not equal to a specific value we provide. We can also filter to see which columns are or aren’t missing (NA).

Now for some examples of using the filter statement I’ll explain a few lines of code. I’m not going to be showing the output for these since it’ll take up too much space but if you’re doing this alongside me, you’ll see these filters in action. I can also send out the code later so you can test these yourself.

The first example here filters by the Species column. This will cause only the rows that are classified as the setosa species to be returned. You’ll see that there are only 50 rows of data now which makes sense since we earlier saw that there were 50 observations of each species.

The second example is now filtering by multiple columns. We’re requiring that rows have a sepal length less than 5 AND a sepal width greater than or equal to 3. It is important to note that when chaining things together like this with a comma we are requiring both cases to be true. You can also provide multiple requirements through piping multiple filter statements together. If you think that doing so makes your code more readable, go for it!

filter()

iris %>% filter('!'is.na(Species)) %>% select(Sepal.Length

Presenter
Presentation Notes
As a final example of using the filter function I’ll showcase two things at once. The first is the use of the is.na expression. This is used slightly different than the other relational expressions from the last slide. When using this, we call the is.na function and pass the column we’re interested in checking as input. Remember that NA values are basically null or missing values in data. Something else new here is the use of the exclamation point in front of the is.na call. An exclamation point is used to negate whatever relational expression we have. This means that instead of returning the NA rows we are going to return the rows that are NOT NA. If we stop at this point and run the code, you should see that we get all 150 rows returned which means that nothing was removed by this filter statement. This indicates that there are no species values that are NA.

The second thing I’m showing here is the ability to use the pipe operator to chain multiple commands together. We just discussed what the filter function is doing but let’s say we wanted to only look at the sepal length column after performing this filter. We can pipe a select statement and pass the sepal length as an argument. If we run this code, you’ll see that we now just have one column being returned.

One Last Relational Expression

°%iN%

o Check a column for mulfiple values

iris %>% filter(Species %in% c('setosa', 'versicolor'))

Presenter
Presentation Notes
When I was going over the slides to make sure I covered everything I wanted to, I realized that I had forgotten to include a very helpful relational expression. This is the %in% expression. This expression basically lets us check to see which rows have a column value matching one of multiple given values.

The line of code shown here will perform a filter similar to the first one I showed. Here we filter by the Species column and only want to return rows that match one of the given values. In this case we are returning rows that have the species of either setosa or versicolor. This is a quick way to query a column by multiple values at once.

group_by() and summarize()

> group_by()
o groups data based on the value of a column or
columns

o Needs to be used in combination with summarize to
get the full use

o Mostly used on categorical values

Presenter
Presentation Notes
Next, I’ll introduce a way to analyze your data when it is separated into groups. This is done by using the group by and summarize functions.

First, I’ll explain group_by(). This is a function that groups data based on the value of a specified column or columns. In order to get any real information out of these groupings you want to use this in combination with the summarize function I’ll mention on the next slide. Usually, you’ll want to group your data based on a categorical value. Numerical groupings will result in many separate groups which may not be intended. Groupings over the range of a numerical value are possible through the use of a cut() function but I won’t be discussing that here. Just something to keep in mind.

group_by() and summarize()

oSummarize

0 Compu’res specified stafistics over the given data
grouping

o Will compute the statistic over the last grouping

oCan compute as many values at once as you would
like

o|nput: our data frame followed by the following:
o<name> = staftistic

Presenter
Presentation Notes
The second function we will need is the summarize function. This let’s su compute any specified statistics over the given data groupings. Something to note here is that summarize will compute the statistics over the last grouping. This means that if we grouped by multiple columns in our group_by statement it will compute the statistic over the last column named in the group_by function call. I’ll show an example of this on another slide to clarify. When calling summarize we are able to compute as many statistic values at once as we would like. I’ll go over the of the possible values on the next slide.

Just like before we pass the data frame as an input to the function. However, since we are creating a new column we have to add a second argument. This contains the name of the statistic we’re generating followed by an equal sign then the statistic we’d like to generate. You’ll see an example of this on the next slide.

As a side note, if you try to call summarize without performing a group_by R will try to compute the statistic you request over the entire data set. This likely isn’t what you are aiming to do so be sure to group your data first!

group_by() and summarize()

o Example Statistics:
omean()
osd()
o mMax()
omin()

°n()

Presenter
Presentation Notes
Here I’ve listed a few example statistics that can be computed when using the summarize function. I’ll show specific examples of some of these on the next few slides.

Each of these statistics will be computed over the provided grouping for the specified column(s). This means that when you specify the mean of a column, it will compute the mean of that column for each of the separate groupings.

The statistics listed here will give you the mean of the data in a group, standard deviation of the data in a group, max value of the groups, minimum value of the groups, and finally n will give the size of the group (in other words the number of rows within each group).

group_by() and summarize()

iris %>% group_by(Species) %>% summarize(meanSepallLength = mean(Sepal.Length

Species meanSepallLength
<fct> <dbl>
setosa 5.01
versicolor 5.94
virginica 6.59

Presenter
Presentation Notes
Alright with all of that out of the way, let’s look at a few examples of using group_by and summarize.

The first example we have here will group the data by their species. It will then compute the mean sepal length of each of the groupings and report that as the output. What we see is in the printout is each of the values that were used in grouping, in this case the three different species, and the statistic computed in the summarize statement, in this case the mean sepal length of each group.

group_by() and summarize()

iris %>% group_by(Species, Sepal.Width) %>%
summarize(maxPetallLength max(Petal.Length),
minPetalLength = min(Petal.Length),
n =n

“summarise()” has grouped output by 'Species'. You can override using the ~.groups’ a

rgument.

A tibble: 43 x 5

#f Groups: Species [3]
Species Sepal.Width maxPetallLength minPetalLength n
<fct> <dbl> <dbl> <dbl> <int>
setosa 2.3 1.3 1.3 1

setosa 2.9 1.4 1.4 1
setosa 3 1.6 1.1 6

Presenter
Presentation Notes
Now let’s look at a more complicated group by and summarize call. In this code we’re grouping by both the species and the sepal width. Note that grouping by the sepal width doesn’t make too much since due to it being numerical but let’s do it for the purpose of this example.

We’re now grouping by two different columns. When we do this and then call summarize, summarize will compute the requested statistics for the last column named in the group by statement within all the groupings. This means that in our case we will be computing the statistics over the groupings of each sepal width within each species. If we jump ahead to our output, we see that R tells us that our output is still grouped by Species. This is because we only summarized over sepal.width and still have data grouped by species.

Now let’s look at what we’re doing in the summarize statement. We’re finding the minimum and maximum values for petal length as well as the number of observations of each petal length within each species. We can view this in the output. Within the setosa species the first few sepal.widths that we see are 2.3, 2.9, and 3. These are 3 of the 43 total groupings of species and sepal.width (We get this number of groupings by looking at the number of rows printed in the output – 43!). We see that for each of the groupings we have the max and min petal length printed. For the third row at the bottom here we see that the n column has a value of 6. This indicates that there were 6 observations that were in the setosa species that had a sepal width of 3.

group_by() and summarize()

iris %>% group_by(Species, Sepal.Width) %>%
summarize(meanSepallLength = mean(Sepal.Length, na.rm = TRUE %> %
summarize(n =

A tibble: 3 x 2
Species n
<fct> <Iint>

1 setosa 16

2 versicolor 14

3 virginica 13

Presenter
Presentation Notes
Alright, for one last showcase of the way having multiple group_by columns named works I’ll perform another summarize to code similar to what we had in the last slide. However, this time we’ll go back to calculating the mean sepal length and add a new argument to the mean function call.

This new argument is ‘na.rm = TRUE’. What this will do is remove any null or missing values before calculating the mean. This doesn’t apply to our sample data set, but it is sometimes the case that you have missing values in a column you are trying to calculate the mean of. If this happens, the mean will not be successfully calculated as R will not know how to handle averaging missing data. Adding this na.rm argument basically tells are to ignore any missing values when calculating the mean.

With that explained, let’s look at the extra summarize line. What we’re doing now is taking the output from the first summarize statement and counting the number of rows in each of the groupings. As mentioned on the last slide, the first summary statement groups the data by their sepal widths within their species. This resulted in 43 total rows that we saw in the previous output. What we’re doing now is counting how many of those rows were each species since that is the remaining column in our group_by statement. That is why the output we see here lists the three species. Note that if we add up the values of n we’ll get 43 – the same number of rows we had before.

If this is too confusing right now don’t stress! This is just a quick example of how complicated grouping and summarizing data can get. In many cases simply grouping by one column is enough for analysis so start simple!

mutate()

oCreates a new column

o|lnput: our data frame followed by the following:
o<new column name> = value

Presenter
Presentation Notes
The final function we’ll look at for manipulating our data is the mutate function. This lets us create a new column in our data frame. Just like before we provide the data frame we’re interested in and similar to the summarize function call we need to specify the name of the column we would like to create as well as the value that should be filled in for this column. This value can be any equation that we’d like. This can be combinations of columns or transformations of values to different units.

mutate()

iris %>% mutate(SepallLengthInches = Sepal.Length / 2.54,
SepalProduct = Sepal.Length * Sepal.Width

Sepal.Length Sepal.Width Petal.Length Petal.Width Species SepallLengthInches SepalProduct
5.1 3.5 1.4 0.2 setosa 2.007874 17.85
4.9 3.0 1.4 . setosa 1.929134 14.70
4.7 3. 1.3 . setosa 1.850394 15.04
4.6 3 1.5 setosa 1.811024 14.26

Presenter
Presentation Notes
Here’s an example of the mutate function. What we’re doing here is creating two new columns. The first is going to be named SepalLengthInches and takes the current sepal length value (which is in centimeters) and converts it to inches. The second calculates the product of the sepal length and sepal width and stores it in a new column called sepal product.

As you see in the output, we now have the original 5 columns of data with the two new columns added on. Mutate allows for a quick and easy way to append new columns to your data. This can help you quickly and easily modify your entire data set at once instead of going through cell by cell using something like excel.

mutate()

iris %>% mutate(Species - ifelse(Species — 'steosa', 'setosa’, as.character(Species

Sepal.Length Sepal.Width Petal.Length Petal.Width Species

.5 . 0. setosa
setosa
setosa
setosa
setosa

catnca

Presenter
Presentation Notes
One last thing I would like to show with the mutate function is how I make changes to the data frame all at once. This can be used in a variety of cases but as an example let’s say that we accidentally mislabeled several of the observations. Instead of storing the species name as as setosa, there was an error with the user input and we accidently put down steosa for several of the recordings. The way that I would go about fixing this is by using the mutate function in conjunction with something called ifelse.

Ifelse is a function that let’s us test a condition and then perform something based on whether or not this condition is met. It can be complex so if you feel overwhelmed by it don’t stress. Just try to remember that this is an option and if you encounter a problem that could be solved by conditionally changing values in your data then you can come back and try and implement this.

To try and explain what ifelse does I’ll just walk you through the code I have written here. The first argument in the ifelse statement is the condition we would like to check. In our example we want to check to see if the Species is set to ‘steosa’. This will return True if we are looking at a row that has the typo mentioned earlier. The next argument to this function is the value we want if this condition is True. If we have the typo, we want to set the value to ‘setosa’. This will correct our typo! The third and final argument here is what we want to set the value to if the condition is false. If the condition is false, we don’t have the typo. In this case we want to keep the species value the same as it was without changes. However, the species column is actually a factor so we need to convert it back to a character before we store it (don’t stress over this part – just a small quirk in the data frame I want to make sure I correct for).

Now that we hopefully have an understanding of what is happening in the left side of the mutate statement, let’s point out what we named the “new” column we’re creating. It’s the same name as the current name! This means that we are overwriting the old column and replacing it with this new, corrected column. This is helpful as it will let us edit multiple rows at once which is perfect for our example. However, be very careful doing this. If you overwrite a column you are losing that data so be sure that you really want to do this! Otherwise, if you make a mistake you’ll have to read in the original data again to undo your changes.

We won’t see any changes in the output shown here since we didn’t actually have this typo present but hopefully you can see the usefulness in the ability to edit many rows all at once!

Ending Notes

oThanks for joining In — if you have any questions
please ask!

03/24 — Data Visualization using ggplot?2
03/31 — Reproducible Reports using RMarkdown

Presenter
Presentation Notes
Thanks for joining in on today’s session. If you have any questions now is a great time to ask. As a reminder CISER will be hosting two more sessions like this that will go into more specific topics. The week after next we’ll be looking at visualizing data in R using a package called ggplot2.

	R Cookbook – Tidy Data in R
	Session Info
	Defining Tidy Data
	Tidyverse
	Installing Tidyverse
	Preparing RStudio	
	Pipe Operator
	Advantages of Piping
	select()
	filter()
	filter()
	One Last Relational Expression
	group_by() and summarize()
	group_by() and summarize()
	group_by() and summarize()
	group_by() and summarize()
	group_by() and summarize()
	group_by() and summarize()
	mutate()
	mutate()
	mutate()
	Ending Notes

