Addendum No. 2
3/20/2020

Mount Vernon Install Head-House
Washington State University
Pullman, WA

Project No.9896-2018
Washington State University
Facilities Services, Capital
Addendum No. 2
3/20/2020

Mount Vernon Install Head-House
Washington State University
Pullman, WA

Bid Date: March 24, 2020

1. This Addendum forms a part of the Contract Documents and modifies the original Bidding Documents dated February 29, 2020, and any prior addenda, as noted below.

2. Please acknowledge receipt of this addendum on the Form of Proposal.

This Addendum consists of 14 total pages including the following Attachments:

<table>
<thead>
<tr>
<th>Attachment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Catch Basin Detail</td>
</tr>
<tr>
<td>Revised M1-1 – Schedules - HVAC</td>
</tr>
<tr>
<td>Revised M3-0 – 1St Floor HVAC</td>
</tr>
<tr>
<td>Revised M5-1 – Details</td>
</tr>
</tbody>
</table>

Changes to prior Addenda:
None

Changes to Bidding Requirements:

1-1. SECTION 00 21 13 – Instructions to Bidders

Item 1. To encourage social distancing and allow the most time for bidders to prepare their bids, bidders may submit their bids in electronic or fax format. For these two bidding format options the requirement to submit a sealed bid is waived.

Add to Article 1.10, A. 4.:

Electronic Bids: Bidders may submit their bid via email to contracts@wsu.edu prior to the bid submission deadline. The emailed bid must include all documents that would have normally been submitted in the sealed envelope, including but not limited to the Form of Proposal and bid bond, in either PDF or Image format. The original bid and accompanying original bond shall be mailed and post marked within 72 hours of the bid open.

Faxed Bids: Bidders may submit their bid via Fax to 509-335-9304 prior to the bid submission deadline. The faxed bid must include all
documents that would have normally been submitted in the sealed envelope, including but not limited to the Form of Proposal and bid bond. The original bid and accompanying original bond shall be mailed and post marked within 72 hours of the bid open.

Bidder Questions and WSU Response:

1. Is contractor going to be a requirement to have a licensed surveyor lay out the building corners? Site utilities? Please clarify

 RESPONSE: Yes. ACAD files will be provided by the Civil Engineer.

2. Can the topsoil be deposited on site or does it need to be hauled off?

 RESPONSE: Topsoil to be deposited on site. Coordinate with Dan Gorton, WSU NWREC Facilities Manager.

3. Can you clarify Temporary Utilities? Spec says contractor can use and will be charged for fair use?

 RESPONSE: Contractor to provide temporary utilities as required. This includes: water, power, temporary heat if required, Porta potty and cellphone.

4. Clarify - What testing is required to be paid by Contractor? Soils? Concrete, reinforcing steel? Plans calls for owner to do wood framing inspection, correct?

 RESPONSE: See Section 01 45 23 Testing Laboratory Services.

5. Who is responsible for locates?

 RESPONSE: Contractor.

6. Are blinds required on all windows?

 RESPONSE: Yes.

7. Is trenching for Gas to be by Owner/CNG or Contractor?

 RESPONSE: CNG.

8. Sheet C-1.0 No elevation is shown on the sidewalks. Please clarify.

 RESPONSE: Sidewalks will slope away from finish floor of building minimum 1/8"/ft. from finish floor.
9. Where do the footing drains go to?

RESPONSE: There is a detention pond/swale to the east of the building. Footing drains are perforated pipe. Direct and discharge to the swale to the east.

10. What is the depth of soil stripping?

RESPONSE: Refer to the Geotech report. It will vary between 12”-24”.

11. Reflected ceiling plan shows open to structure in areas, finish schedule shows GWB throughout. Please confirm areas that are to be open to structure. Is the wall insulation to be included?

RESPONSE: Mechanical and electrical and lab area rooms 102/103 to be open to the structure above.

12. Do the walls of 101A just go to 9’? Are there ceiling joist over those walls? What size? Plywood on top of those joists? Is there sound insulation in those walls and the ceiling? Detail 7/8 does not make sense as it calls out steel studs and show a suspended ceiling? Is there a detail and elevation for the bathroom venting? Please provide cross sections.

RESPONSE: Wood frame walls to frame to structure above surrounding the Restroom on the future lab area. Install ceiling joists 2x6 min. size with 5/8”GWB on underside. GWB to be installed on outside face full height. Interior face to 9’ A.F.F. Walls to be sound insulated.

13. Are Refrigerator and Microwave to be F.O.I.O.

RESPONSE: Yes.

14. Sheet A-2.1 Room 102 and future 103 appears to show exposed TJI’s. Also shows two lines from grid line 1 running east west for 6 joist spaces. Please clarify. Assume there is no GWB? The light locations do not match the fixture locations on E-3.1.

RESPONSE: Rooms 102/103 are exposed to structure. Refer to E-3.1 for fixture locations.

15. Sheet A-2.1 the false beam does not show going wall to wall?

RESPONSE: False beam to frame from exterior of wall to wall.
16. Sheet M3.0 what is the routing and duct elevation for the Venting / Heat recovery system (DOAS) shown on M3.0? What elevation are the lovers at in walls at line B and C?

RESPONSE: Refer to revised sheets M3.0 and M5.1. Ducting has been moved to lab area along with DOAS unit, which is called out to be mounted 8'-4" AFF minimum. Ducts should be run plumb and level as they connect to the unit per detail 2/M5.1. This detail has been revised to show connections to the TJL joists themselves and the correct roof construction shown.

17. Sheet A-2.2 Please clarify if Mechanical curbs are needed. Mechanical plans do not show any.

RESPONSE: Curbs are not required. There is no rooftop equipment.

18. Sheet A-2.3 Room 102 and 103 on the room schedule calls for finishes but the plans show none. Please clarify.

RESPONSE: No GWB to be installed on walls and ceiling of these rooms 102/103 except at walls surrounding the restroom and the interior of the restroom.

19. Are substitutes allowed for the Overhead Door?

RESPONSE: No.

RESPONSE: There are no exterior louvers used in the building.

21. Sheet A-4.0 Building sections do not show Heat recovery system, piping and unit, please clarify.

RESPONSE: Refer to mechanical for location.

22. Sheet A-6.3 Details 1, 2 & 3 refer to a HVAC curb but there are none on the mechanical plans. Please clarify.

RESPONSE: There are no curbs, ignore details 1, 2 and 3 on Sheet A-6.2.

23. Sheet S-6.0 Structural calls for 1 ¼”x9 ½” LSL, Architectural Drawings call for a 2x12 cedar fascia board. Is the 2x12 in addition to the LSL?

RESPONSE: Disregard LSL. Facia to be 2x12 Cedar primed and painted. Follow Architectural Drawings.
24. Sheet M1.1 under the Heat Recovery Ventilator Schedule HRV-1 Note 5. Indicates a requirement for Ebtron GTC116-P to be provided and installed. Is this control actually required for a 130 cfm HRV system? This is a very expensive and robust control for such a simple system. Please advise if this control is intended to be utilized on this project.

RESPONSE: This note has been removed from the schedule on M1.1. Ebtron GTC116-P sensor is not required. See revised sheet M1.1.

25. Sheet M2.0 what is the connection detail from the trench drain to the CB at room 102?

RESPONSE: Please see attached TD to CB detail from manufacturer, which shows connection.

26. Sheet M2.1 please clarify the routing and elevation of the piping. Is it under slab? Gas shows in the TJI’s but water is not clarified? Is it exposed below the ceiling?

RESPONSE: Water and vent piping to be installed exposed at ceiling level in the non-office areas. Gas piping to be roughed in the building. Piping within the office area shall be concealed in the TJI spaces.

27. Sheet M3.0 Need routing and elevations of the venting/heat recovery (DOAS) ducting and HRV unit. Assume it is suspended? At what height and how? Detail on M5.1 shows it suspended from Unistrut.

RESPONSE: Refer to revised sheets M3.0 and M5.1. Ducting has been moved to lab area along with DOAS unit, which is called out to be mounted 8’-4” AFF minimum. Ducts should be run plumb and level as they connect to the unit per detail 2/M5.1. This detail has been revised to show connections to the TJI joists and the correct roof construction shown.

28. Spec Section 01 32 13 is requiring the use of Primavera and that a copy of the program is provided to the Owner. Is Microsoft Project an acceptable alternative to the use of Primavera? If so, in lieu of providing software would schedules provided in PDF format be acceptable?

RESPONSE: Microsoft Project is an acceptable alternative. Please be prepared to provide schedules in native MS Project format as well as PDF.

29. Could you please specify the manufacturer of the door coordinator on HW group 8?

RESPONSE: Door Components Inc. (DCI)
30. Is the door veneer to be white maple or natural maple?

RESPONSE: Natural maple

31. The door schedule shows that door 5 is a pair of hollow metal doors but the notes say it is a storefront door. The elevations also indicated the door to be storefront doors. Should be assume that this door is intended to be storefront?

RESPONSE: Doors are to be hollow metal doors per the schedule. Doors should match the elevation. They are to be hollow metal with glazing as shown.

32. Specifications call for the storefront doors to be Kawneer Tuffline series. Based on our information Kawneer has moved away from this series. We would like to propose the Kawneer Insulpour series. Please see the attached information.

RESPONSE: Use the Kawneer Insulpour series. It is approved as substitution.

33. Discrepancy with size of plinth - 24" Sq on 4/S5 vs. 18" Sq on 11/A6.2 - Please clarify

RESPONSE: Plinths are to 18" square as shown on 11/A-6.2.

34. The south end of the interior wall on GL2 is shown as a 4" wide wall but rest of wall is shown as 6" - Please confirm wall type as wall type 2 or show detail for furred wall

RESPONSE: The walls are to be 2x6 studs for wall type 3.

35. Detail 6/S5 suggests that the lab space is to have a stem wall that extends above the slab elevation but no elevation is given. Please clarify intent around perimeter of lab space.

RESPONSE: Slab is to be flush as shown per detail 1/S-5.

36. Insulation in 6" wall is called out as R-11. We believe it should be R-19 for a 6" wall cavity. R-11 is for 4" cavity. Please confirm or clarify.

RESPONSE: Change insulation at wall type 3 to R-19 minimum.

37. Please confirm wall type on E and W walls of RR101A - Is the intent to have RC channel on all perimeter walls of RR101A

RESPONSE: Yes that is the intent.
38. Detail 9/A6.1 shows hollow metal door frames as grout filled. This is not typical in a wood framed building – please clarify intent.

RESPONSE: Hollow metal frames to be filled with foam insulation.

39. No fire extinguishers are shown on plan - Please confirm location if needed.

RESPONSE: Provide and install (2) total 2A 10BC fire extinguisher. (1) in lab and (1) in office area. Locations to be field verified. Extinguishers and cabinets to be per specifications.

40. West elevation shows 1x2 cedar batten while detail 10/A6.2 shows 1x3 cedar battens - Please clarify intent.

RESPONSE: Cedar battens to be 1x3.

41. LVT flooring type is not specified in spec or on A2.3 - Please clarify make/manufacturer.

RESPONSE: Mannington or similar manufacturer. Wood plank pattern, wear layer 20 mil minimum.

42. Restroom flooring listed as LVT with SV integral cove base. Please clarify if the restroom is supposed to have sheet vinyl throughout or LVT with rubber base.

RESPONSE: Restroom to be LVT with 4” Vinyl rubber base.

43. Is the GC to provide blocking in joists per 4/S6 and/or the complete suspended ceiling drop to 9’ for future mechanical/electrical room per A2.0?

RESPONSE: The future mechanical/electrical rooms will not have ceiling. All blocking per structural to be provided and installed.

44. Under 5.02 Specifications Permits, Fees and Notices the Contractor shall procure and pay for permits. Please clarify which permits the Contractor will be responsible for.

RESPONSE: The Owner/Architect will pay for and procure for all permits except electrical permit to be procured and paid for by the GC.

45. The drawings show power packs as part of the lighting controls. We would like to go with a lighting relay panel next to the electrical panel to avoid trying to hide the power packs somewhere in the hard lids. Can we get this substitution approved?

Response: A lighting relay panel would not be acceptable. The products that are shown on the drawings and specifications should be used for lighting
controls. Our intent for the power packs and relays are they be installed in a recessed junction box in the ceiling so that the only things that would be visible from the finished space are junction box covers.

46. The specs ask for hard pipe in the walls. Can we substitute metal flexible conduit?

Response: Flex conduit is acceptable in walls as specified in 26 05 00, paragraph 2.01A. MC cable is not allowed.

47. On sheet E1.1 there is VB25 & DB12/12 which needs to come out from an existing Comm pull box to the new head house. I am assuming that VB25 is a 25 pair cable. If this is correct, does it need to be terminated on a 66 block or have an amphinol on the end? We are also not familiar with the terminology of DB12/12.

Response: Please refer to the cable codes legend on E-0.1 for description of VB25 and DB12/12 cable codes. Also, these cables are described in the specifications along with termination hardware. The specifications call for patch panel terminations for the VB25, but the owner would prefer 66 block terminations instead.

48. In the plans we're missing M1.2 according to the index.

Response: M1.2 has been removed from the drawing set and load calculations moved to Sheet M1.1. Please remove M1.2 and M2.2 from the index on Sheet A-0.0.

END OF ADDENDUM No. 2
1. Determine length of trench section from layout drawing. Add 2" [51mm] to that dimension and cut trench to that length.

2. Cut out ribs flush with trench wall, if required.

3. Cut and remove 2" x 1-3/4" [51mm x 44mm] notched material as shown.

4. Place the basin and the incoming trench section upside down on flat surface as shown. Align the MALE end of the trench section with the catch basin and trace the trench profile on the end of the basin.
5. The cutout for the incoming trench can be made easily with a reciprocating saw as shown.

6. Cut inlet adaptor to the correct depth and place as shown below. Drill 4 holes evenly spaced and thread screws through the adaptor into the catch basin.

7. Attach the incoming trench section with the hardware provided to complete the connection. Silicone adhesive may be used to keep debris from building up in the connection.

Note: Utilize the same procedure for 12 x 24 basin and -HD and Non-HD applications.

All catch basins to be installed with a minimum 4" [102mm] of concrete on all four sides and bottom.
2015 WASHINGTON STATE ENERGY CODE NOTES

NOTE: ITEMS IN PARENTHESES REFER TO CODE SECTIONS FROM THE 2015 WASHINGTON STATE ENERGY CODE.

1. SYSTEMS PROVIDING CONTINUOUSLY AUTOMATICALLY REDUCE OUTSIDE AIR INTAKE BELOW DESIGN RATES WHEN SPACES

2. REDUCED AIR INFILTRATION IN ACCORDANCE WITH SECTION C406.9

3. ENHANCED ENVELOPE PERFORMANCE IN ACCORDANCE WITH SECTION C406.8

4. HIGH-EFFICIENCY SERVICE WATER HEATING IN ACCORDANCE WITH SECTION C406.7

5. (C403.2.6.3 OCCUPANCY SENSORS) CONTRACTOR SHALL PROVIDE OCCUPANCY SENSORS FOR

6. ON-SITE SUPPLY OF RENEWABLE ENERGY IN ACCORDANCE WITH SECTION C406.5

7. (C403.2.4.3 SHUTOFF DAMPER CONTROLS) CONTRACTOR SHALL PROVIDE OUTDOOR AIR SUPPLY,

8. WHERE MECHANICAL VENTILATION IS PROVIDED, THE SYSTEM SHALL BE CONFIGURED TO

9. EXPERIMENTAL OR AUTOMATE DYNAMIC CHANGES AUTOMATICALLY TO ADJUST THE DAILY START TIME OF THE HVAC SYSTEM IN ORDER TO BRING EACH SPACE TO

10. EQUIPMENT PROVIDED WITH AN AIR ECONOMIZER COMPLYING WITH SECTION C403.3.

PERFORMANCE.

EXCEED 240,000 BTU/H PER BUILDING OR 10 PERCENT OF ITS AIR ECONOMIZER CAPACITY,

COMPLIES WITH OPTION A, B, C, D OR E IN TABLE C403.3(10) BELOW. THE TOTAL CAPACITY

EQUIPMENT USED TO COOL ANY SPACES WITH YEAR-ROUND COOLING LOADS FROM LIGHTS

TRANSFERRED TO ONE OR MORE PERIMETER ZONES (AS DETERMINED BY

MINIMUM OF 4 PERCENT HIGHER THE MINIMUM EFFICIENCIES LISTED IN TABLE C403.2.3(3), IN

EQUIPMENT USED TO COOL

AND EER VALUES MORE THAN 15 PERCENT HIGHER THAN MINIMUM EFFICIENCIES LISTED IN

COOLING UNITS WITH A TOTAL COOLING CAPACITY LESS THAN 54,000

199,000 BTU/H.

BTU/H AND OTHER COOLING UNITS WITH A TOTAL COOLING CAPACITY LESS THAN 54,000

BFU/H.

OF THIS EXCEPTION, DEDICATED SERVER ROOMS, ELECTRONIC EQUIPMENT ROOMS OR

TELECOM SWITCH ROOMS ARE NOT CONSIDERED PERIMETER ZONES AND SHALL NOT

BE LISTED IN TABLE C403.2.4.11.5 WITH CONTROL TO VARY THE INDOOR FAN AIRFLOW AS A

SYSTEM FOR UP TO 2 HOURS; A MANUALLY OPERATED TIMER CAPABLE OF BEING ADJUSTED TO

SHALL BE WITHIN 15 PERCENT OF THE MAXIMUM TOTAL EFFICIENCY.

AND EER VALUES MORE THAN 15 PERCENT HIGHER THAN MINIMUM EFFICIENCIES LISTED IN

EQUIPMENT USED TO COOL

MINIMUM EFFICIENCIES LISTED IN TABLE C403.2.3.

EQUIPMENT SHAL BE LISTED IN THE APPROPRIATE CERTIFICATION PROGRAM TO QUALIFY FOR THIS

IMPROVE THE TOTAL BUILDING EERE8 AND EER VALUES MORE THAN 15 PERCENT HIGHER THAN MINIMUM EFFICIENCIES LISTED IN

COOLING UNITS WITH A TOTAL COOLING CAPACITY LESS THAN 54,000

OF THIS EXCEPTION, DEDICATED SERVER ROOMS, ELECTRONIC EQUIPMENT ROOMS OR

TELECOM SWITCH ROOMS ARE NOT CONSIDERED PERIMETER ZONES AND SHALL NOT

BE LISTED IN TABLE C403.2.4.11.5 WITH CONTROL TO VARY THE INDOOR FAN AIRFLOW AS A

SYSTEM FOR UP TO 2 HOURS; A MANUALLY OPERATED TIMER CAPABLE OF BEING ADJUSTED TO

SHALL BE WITHIN 15 PERCENT OF THE MAXIMUM TOTAL EFFICIENCY.

AND EER VALUES MORE THAN 15 PERCENT HIGHER THAN MINIMUM EFFICIENCIES LISTED IN

COOLING UNITS WITH A TOTAL COOLING CAPACITY LESS THAN 54,000

BFU/H.

BTU/H AND OTHER COOLING UNITS WITH A TOTAL COOLING CAPACITY LESS THAN 54,000

BFU/H.

OF THIS EXCEPTION, DEDICATED SERVER ROOMS, ELECTRONIC EQUIPMENT ROOMS OR

TELECOM SWITCH ROOMS ARE NOT CONSIDERED PERIMETER ZONES AND SHALL NOT

BE LISTED IN TABLE C403.2.4.11.5 WITH CONTROL TO VARY THE INDOOR FAN AIRFLOW AS A

SYSTEM FOR UP TO 2 HOURS; A MANUALLY OPERATED TIMER CAPABLE OF BEING ADJUSTED TO

SHALL BE WITHIN 15 PERCENT OF THE MAXIMUM TOTAL EFFICIENCY.

AND EER VALUES MORE THAN 15 PERCENT HIGHER THAN MINIMUM EFFICIENCIES LISTED IN

COOLING UNITS WITH A TOTAL COOLING CAPACITY LESS THAN 54,000

BFU/H.

BTU/H AND OTHER COOLING UNITS WITH A TOTAL COOLING CAPACITY LESS THAN 54,000

BFU/H.

OF THIS EXCEPTION, DEDICATED SERVER ROOMS, ELECTRONIC EQUIPMENT ROOMS OR

TELECOM SWITCH ROOMS ARE NOT CONSIDERED PERIMETER ZONES AND SHALL NOT

BE LISTED IN TABLE C403.2.4.11.5 WITH CONTROL TO VARY THE INDOOR FAN AIRFLOW AS A

SYSTEM FOR UP TO 2 HOURS; A MANUALLY OPERATED TIMER CAPABLE OF BEING ADJUSTED TO

SHALL BE WITHIN 15 PERCENT OF THE MAXIMUM TOTAL EFFICIENCY.

AND EER VALUES MORE THAN 15 PERCENT HIGHER THAN MINIMUM EFFICIENCIES LISTED IN

COOLING UNITS WITH A TOTAL COOLING CAPACITY LESS THAN 54,000

BFU/H.

BTU/H AND OTHER COOLING UNITS WITH A TOTAL COOLING CAPACITY LESS THAN 54,000

BFU/H.

OF THIS EXCEPTION, DEDICATED SERVER ROOMS, ELECTRONIC EQUIPMENT ROOMS OR

TELECOM SWITCH ROOMS ARE NOT CONSIDERED PERIMETER ZONES AND SHALL NOT

BE LISTED IN TABLE C403.2.4.11.5 WITH CONTROL TO VARY THE INDOOR FAN AIRFLOW AS A

SYSTEM FOR UP TO 2 HOURS; A MANUALLY OPERATED TIMER CAPABLE OF BEING ADJUSTED TO

SHALL BE WITHIN 15 PERCENT OF THE MAXIMUM TOTAL EFFICIENCY.

AND EER VALUES MORE THAN 15 PERCENT HIGHER THAN MINIMUM EFFICIENCIES LISTED IN

COOLING UNITS WITH A TOTAL COOLING CAPACITY LESS THAN 54,000

BFU/H.

BTU/H AND OTHER COOLING UNITS WITH A TOTAL COOLING CAPACITY LESS THAN 54,000

BFU/H.

OF THIS EXCEPTION, DEDICATED SERVER ROOMS, ELECTRONIC EQUIPMENT ROOMS OR

TELECOM SWITCH ROOMS ARE NOT CONSIDERED PERIMETER ZONES AND SHALL NOT

BE LISTED IN TABLE C403.2.4.11.5 WITH CONTROL TO VARY THE INDOOR FAN AIRFLOW AS A

SYSTEM FOR UP TO 2 HOURS; A MANUALLY OPERATED TIMER CAPABLE OF BEING ADJUSTED TO

SHALL BE WITHIN 15 PERCENT OF THE MAXIMUM TOTAL EFFICIENCY.

AND EER VALUES MORE THAN 15 PERCENT HIGHER THAN MINIMUM EFFICIENCIES LISTED IN

COOLING UNITS WITH A TOTAL COOLING CAPACITY LESS THAN 54,000

BFU/H.

BTU/H AND OTHER COOLING UNITS WITH A TOTAL COOLING CAPACITY LESS THAN 54,000

BFU/H.

OF THIS EXCEPTION, DEDICATED SERVER ROOMS, ELECTRONIC EQUIPMENT ROOMS OR

TELECOM SWITCH ROOMS ARE NOT CONSIDERED PERIMETER ZONES AND SHALL NOT

BE LISTED IN TABLE C403.2.4.11.5 WITH CONTROL TO VARY THE INDOOR FAN AIRFLOW AS A

SYSTEM FOR UP TO 2 HOURS; A MANUALLY OPERATED TIMER CAPABLE OF BEING ADJUSTED TO

SHALL BE WITHIN 15 PERCENT OF THE MAXIMUM TOTAL EFFICIENCY.

AND EER VALUES MORE THAN 15 PERCENT HIGHER THAN MINIMUM EFFICIENCIES LISTED IN

COOLING UNITS WITH A TOTAL COOLING CAPACITY LESS THAN 54,000

BFU/H.

BTU/H AND OTHER COOLING UNITS WITH A TOTAL COOLING CAPACITY LESS THAN 54,000

BFU/H.

OF THIS EXCEPTION, DEDICATED SERVER ROOMS, ELECTRONIC EQUIPMENT ROOMS OR

TELECOM SWITCH ROOMS ARE NOT CONSIDERED PERIMETER ZONES AND SHALL NOT

BE LISTED IN TABLE C403.2.4.11.5 WITH CONTROL TO VARY THE INDOOR FAN AIRFLOW AS A

SYSTEM FOR UP TO 2 HOURS; A MANUALLY OPERATED TIMER CAPABLE OF BEING ADJUSTED TO

SHALL BE WITHIN 15 PERCENT OF THE MAXIMUM TOTAL EFFICIENCY.

AND EER VALUES MORE THAN 15 PERCENT HIGHER THAN MINIMUM EFFICIENCIES LISTED IN

COOLING UNITS WITH A TOTAL COOLING CAPACITY LESS THAN 54,000

BFU/H.

BTU/H AND OTHER COOLING UNITS WITH A TOTAL COOLING CAPACITY LESS THAN 54,000

BFU/H.

OF THIS EXCEPTION, DEDICATED SERVER ROOMS, ELECTRONIC EQUIPMENT ROOMS OR