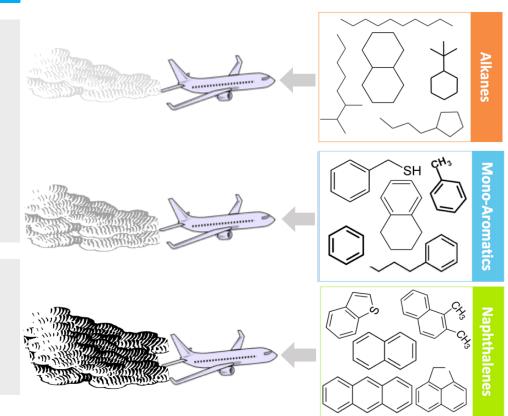
Naphthalene Removal Assessment Project 39

Project managers: Warren Gillette & Rangasayi Halthore (FAA) Lead investigators: Raymond Speth & Steven Barrett (MIT)

> April 3-4, 2018 Cambridge, MA

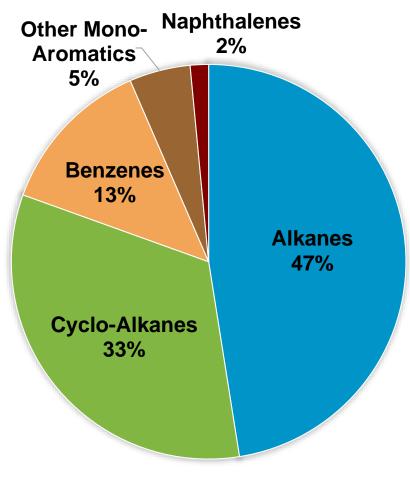
Opinions, findings, conclusions and recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of ASCENT sponsor organizations.

Motivation



NvPM cause and effect

1 Aviation-attributable non-volatile particulate matter (nvPM) emissions contribute to:


- Air quality related **health effects**
- Aviation's climate impact through direct & indirect radiative forcing and contrail formation

2 Naphthalenes in jet fuel have been identified as **disproportionate contributors to nvPM emissions** compared to other fuel species

Motivation

Typical jet fuel composition

J. H. Gary, G. E. Handwerk, and M. J. Kaiser, CRC Press, 2007. "Petroleum Quality Information System 2013 Annual Report," Jan. 2013.

Naphthalene Removal

4 On average, naphthalenes constitute **less that 2% of the total composition of jet fuel**, and less than 10% of the total aromatic content

3 There are **industry-standard finishing processes** that, with minimal changes, could be used to eliminate naphthalenes in jet fuel feedstocks

Motivation

NvPM cause and effect

Naphthalene Removal

1 Aviation-attributable r particulate matter (nur contribute to:

- Air quality rela
- Aviation's climative direct radiative contrail formative

A U.S.-wide cost-benefit analysis of naphthalene removal is desirable to inform future Jet-A standard policy

re **industry standard sses** that, with ould be designed enes in jet fuel

2 Naphthalenes in jet fuel have been identified as a **disproportionate contributor to nvPM emissions** when compared to mono-aromatic species On average, **naphthalenes constitutes less that 2%** of total composition of jet fuel, and less that 10% of total aromatic content

Current work and status

1 Completed

- Select candidate refinery
 processes for naphthalene
 removal
- Calculate investment and operating costs for selected processes
- Estimate the cost of removing naphthalene from the U.S. jet pool

Estimate **added refinery emissions** associated with additional jet fuel processing

2) Near Term Objectives

- 2a Estimate reduction in nvPM due to reduced fuel (✓) naphthalene content
- Quantify climate and air quality impacts
- Complete integrated U.S. societal cost/benefit analysis of nvPM reduction

Objectives

- Select candidate refinery processes that selectively remove jet fuel naphthalenes while providing:
 - Preserved aromatic content; Minimal changes to fuel characteristics
 - Limited incremental emissions; Technical and economic feasibility

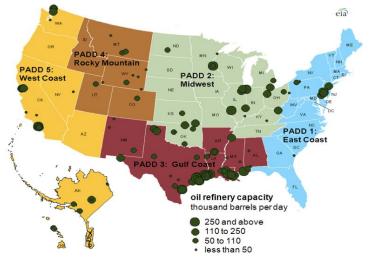
Hydro-Treating

- Industry standard finishing process
- Hydrogen and jet fuel reacted to:
 - **Saturate** di-aromatics
 - Remove sulfur / nitrogen

Extractive Distillation

- Di-aromatics selectively removed from jet fuel using a polar solvent
- Naphthalene raffinate used or burned elsewhere in the refinery

Calculated refinery process costs (1/2)


- Associated utility and materials requirements for each refinery
- Process unit investment and integration costs and uncertainty
- U.S. regional utility costs, cost growth, and uncertainty

U.S. Refining Pool Capacity

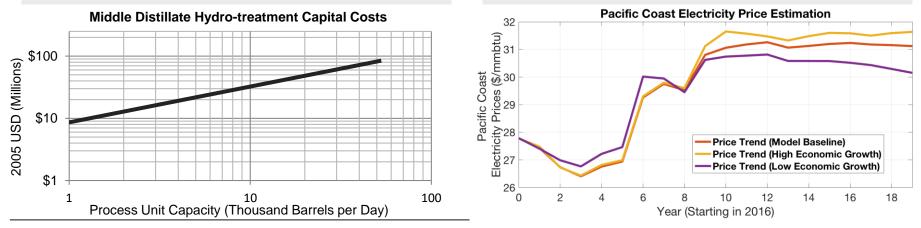
- 1.6 Million barrels/day jet fuel refining capacity
- 116 U.S. refineries considered

1bCompleted:

Capacities >1000 barrels per day of crude

"Annual Energy Outlook 2017: with projections to 2050," U.S. Energy Information Administration, Jan. 2017. "GlobalData O&G," *O&G: Downstream Analytics*. April 2017

1bCompleted: Calculated refinery process costs (2/2)



Capital Investment Costs

- Process unit and supporting units investment costs determined using cost-curve methods
- Other costs considered:
 - Utility system infrastructure
 - Integration costs
 - Inflation & Location factors

Operating Costs

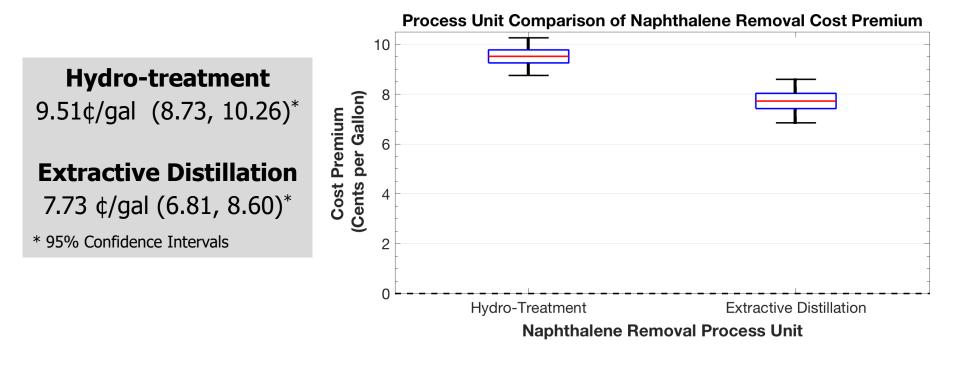
- U.S regional utilities historical and predictive data collected
- Future utilities costs predicted as a function of
 - U.S. EIA predicted mean
 - Stochastic term calibrated by historical price fluctuations

Uncertainties in cost accounted for as parameter probability distributions

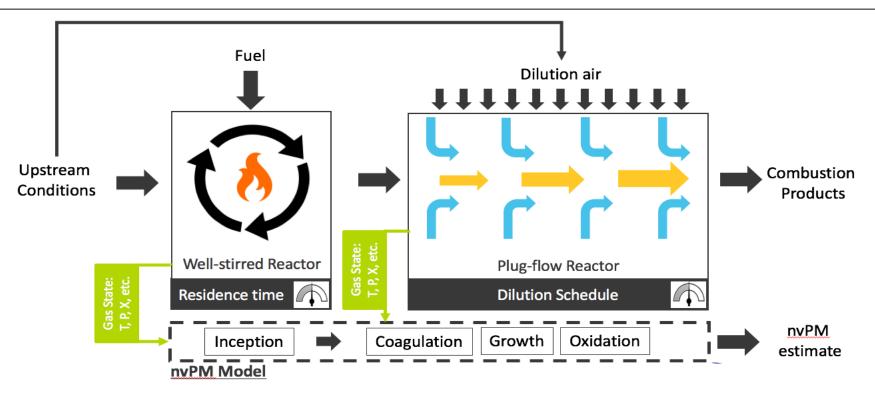
9

Completed: The costs naphthalene removal (1/2)

Objectives


- Collect capital and utility costs for U.S. refining pool
- Estimate the integrated costs of naphthalene removal
 - Societal, integrated cost estimate for U.S. produced jet fuel
 - Quantify uncertainty distributions due to uncertainties in model inputs

Completed: The costs naphthalene removal (2/2)

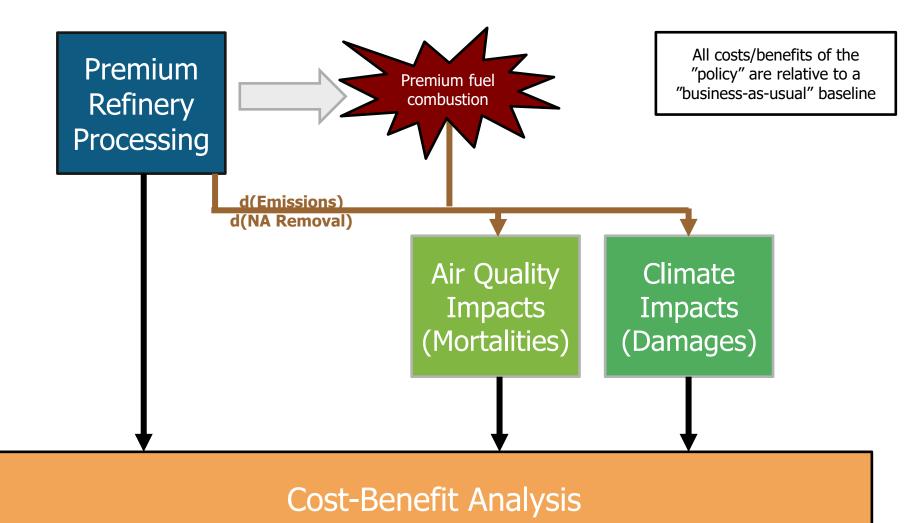


- **U.S. societal cost estimate** (shown above) assumes funding structure is equivalent to U.S. federal bonds
- **Open-market cost premium will be higher** due to expected return on investment for investors, taxation, and loan guarantees. Mean cost premiums:
 - Hydro-Treating: 18 ¢/gal
 - Extractive distillation: 13 ¢/gal

2a Near term objectives: Link between naphthalene and nvPM

- Detailed-chemistry reactor network for nvPM estimation
 - Reaction Mechanism Generator (RMG) used to generate the jet-fuel combustion reaction mechanism
 - Soot inception and microphysics estimated through the combustor model
- Fuel composition study to estimate naphthalene's differential impact on soot production

2b Near term objectives: Quantification of climate and AQ impacts


Radiative Source	Air Quality Impact	Climate Impact	Description
Reduced nvPM	Reduced Mortality	Cooling	Reduced soot emissions from jet engine tailpipe
Refinery Emissions		Warming	Increased CO ₂ , light end emissions from hydrogen production / utilities
Contrail Effects		Mixed	Increased hydrogen fuel content Decreased soot particulate size
Reduced Sulfates*	Reduced Mortality	Warming	Reduced fuel sulfur content from refining

*Hydro-treatment will remove the majority of Sulfates. Extractive Distillation has limited impacts on sulfates.

- Tools used for estimated climate / AQ impacts
 - Climate: APMT-I Climate
 - AQ: North American nested domain simulations using GEOS-Chem Chemistry Transport Model

2b Near term objectives: Integrated cost/benefit analysis

Summary

- A **U.S.-wide cost-benefit analysis** of Naphthalene Removal is desirable to inform future Jet-A standard policy.
 - Removal of jet fuel naphthalene has the potential to significantly reduce nvPM emissions, therefore reducing aviation's climate and AQ impacts
- Completed
 - U.S. Societal Cost estimate are 9.51¢/gal (8.73, 10.26) for hydro-treatment and 7.73 ¢/gal (6.81, 8.60) for extractive distillation
- Next Steps
 - Detailed-chemistry chemical reactor network used for nvPM estimation
 - Existing tools used to **estimate climate / AQ impacts**

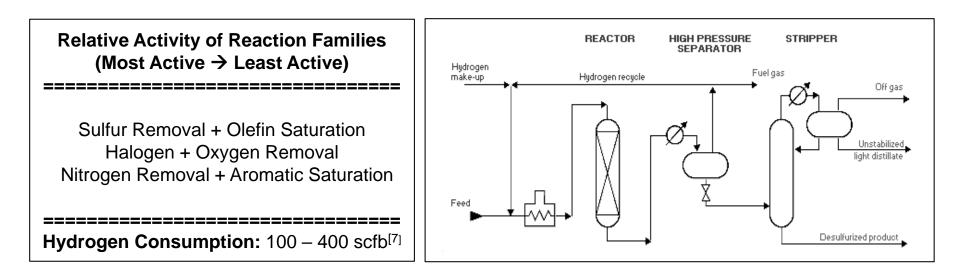
References

- J. H. Gary, G. E. Handwerk, and M. J. Kaiser, *Petroleum Refining: Technology and Economics, Fifth Edition*. CRC Press, 2007.
- R. L. Speth, C. Rojo, R. Malina, and S. R. H. Barrett, "Black carbon emissions reductions from combustion of alternative jet fuels," *Atmospheric Environment*, vol. 105, pp. 37–42, Mar. 2015.
- D. L. A. F. B. VA, "Petroleum Quality Information System 2013 Annual Report," Jan. 2013.
- R. H. Moore *et al.*, "Influence of Jet Fuel Composition on Aircraft Engine Emissions: A Synthesis of Aerosol Emissions Data from the NASA APEX, AAFEX, and ACCESS Missions," *Energy Fuels*, vol. 29, no. 4, pp. 2591–2600, Apr. 2015.
- B. T. Brem *et al.*, "Effects of Fuel Aromatic Content on Nonvolatile Particulate Emissions of an In-Production Aircraft Gas Turbine," *Environ. Sci. Technol.*, vol. 49, no. 22, pp. 13149–13157, Nov. 2015.
- G. Hoek *et al.*, "Long-term air pollution exposure and cardio- respiratory mortality: a review," *Environmental Health*, vol. 12, p. 43, 2013.
- "Annual Energy Outlook 2017: with projections to 2050," U.S. Energy Information Administration, Jan. 2017.

"GlobalData O&G," Oil&Gas: Downstream Analytics.

Contributors

- Drew Weibel
- Mengjie Liu
- Raymond Speth
- William Green
- Steven Barrett



BACK-UP SLIDES

1a Process 1: Hydro-treatment


- Refining process used for sulfur, nitrogen, and metal removal, and saturation of aromatics and olefins
- Feedstock is reacted, at mild temperatures (~360° C) and pressures (50–100 bar), with high-purity hydrogen

1a Process 2: Extractive distillation

- Refining process by which the desired extract is separated from the feed via solution with a polar solvent
- Aromatic extract first separated from feed, then monoaromatics and naphthalene's are separated via distillation

