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Abstract
We present higher order sensitivity coefficient calculations for O3 and PM2.5 formation with respect to aircraft
emissions in the continental United States, showing the importance of including second order sensitivity
coefficients when utilizing sensitivity analyses methods for understanding the impacts of aviation emissions.
We designated NOX and VOC emissions as sensitivity parameters for O3 formation; and NOX, SO2, VOC,
EC, OC, and SO4 emissions as sensitivity parameters for PM2.5 formation. The Community Multiscale Air
Quality Model (CMAQ) was used to estimate the concentrations and sensitivities of air pollutants in 36×36
km grid cells across the continental United States. First order sensitivity coefficients were calculated for all
sensitivity parameters while second order sensitivity coefficients were calculated for only NOX, VOC, and SO2

emissions. With the inclusion of second order sensitivity coefficients we are able to show regions of chemical
regime (NOX-limited versus NOX-inhibited) change in the case of O3 formation and areas where oxidant
limiting indirect effects are important in the case of PM2.5 formation. Overall, we find that NOX emissions
are the largest source of nonlinear behavior exhibited in our system. This nonlinear behavior can have an
impact on the tropospheric chemistry governing O3 and PM2.5 formation and must be considered when
trying to understand how aircraft emissions may impact air quality. We present an analysis utilizing these
sensitivity coefficients to estimate the emission reduction needed in five airport grid cells to bring hypothetical
regions in PM2.5 nonattainment into attainment. Utilizing first order sensitivities, we find that 8.00, 18.41,
16.86, 7.05, and 11.77 times fewer emissions are needed at Hartsfield-Jackson Atlanta International Airport
(ATL), Denver International Airport (DEN), John F. Kennedy International Airport (JFK), Los Angeles
International Airport (LAX), and Chicago O’Hare International Airport (ORD), respectively to decrease
concentrations of PM2.5 from nonattainment levels of 14 µg/m3 to attainment levels of 12 µg/m3.
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Chapter 1

Introduction

1.1 Aviation

The aviation sector has seen substantial growth in the past decade with air carriers flying 631 million
passenger miles in the year 2015, resulting in an increase of around 11 % over the past ten years [1]. This
growth is expected to continue with the Federal Aviation Administration forecasting a 2.1 % increase in U.S.
carrier passenger growth each year for the next 20 years, and a 2.1 % and 3.5 % growth in system traffic in
revenue passenger miles over the next 20 years for domestic travel and international travel, respectively [2].

This projected growth can place a burden on atmospheric air quality as aircraft attributable emissions
become a major component of all traffic related emissions. Aircraft emissions contribute to the overall air
quality through emissions of nitrogen oxides (NOX), sulfur oxides (SOX), volatile organic compounds (VOC),
primary elemental carbon (PEC), primary organic carbon (POC), and primary sulfate (PSO4) during an
aircraft’s entire flight (takeoff to landing). These emissions can lead to the formation of air pollutants such
as O3 and PM2.5. Air pollutant formation from aviation emissions can be considered a regional problem
when emissions from landing and takeoff (LTO) operations affect populations near airports, and it can
be considered a global problem when emissions from higher-altitude cruise operations affect the global
atmospheric chemistry. Hence, in order to understand the overall impact from aviation emissions, we need
to understand the role of these emissions in forming air pollutants.

1.2 Particulate Matter

The U.S. Environmental Protection Agency (EPA) has designated six criteria air pollutants to be regulated
under the National Ambient Air Quality Standards (NAAQS) section of the Clean Air Act [3]. These six air
pollutants are particulate matter (PM10, PM2.5), ozone (O3), sulfur dioxide (SO2), nitrogen dioxide (NO2),
carbon monoxide (CO), and lead (Pb). Regulations were devised for human health protection, however,
these air pollutants have broader implications that impact the climate and chemistry of the atmosphere. In
this study we will focus our efforts on PM and O3 formation from aircraft emissions.

PM can affect human health [4, 5, 6, 7, 8, 9, 10, 11], Earth’s climate [12], visibility [13, 14], and climate
change uncertainty through indirect radiative forcing [12, 13, 14, 15, 16, 17, 18, 19, 20, 21]. Particulate
matter refers to all internally and externally mixed particles found in the atmosphere. The solid or liquid
mixture can vary in composition and formation, but the main measure of particulate matter is mass con-
centration. Particulate matter is classified by its aerodynamic diameter and current air quality standards
have distinguished mixtures associated with adverse health effects having less than 10µm (PM10) and less
than 2.5µm (PM2.5) aerodynamic diameters. However, the degree of health impact varies amongst PM
components [22, 23]. Sources for combustion-related PM include industrial combustion, transportation re-
lated combustion (Including motor-vehicles, aircraft, and marine vessels), and biomass burning. PM can
be directly emitted or it can formed in the atmosphere. These distinctions are labeled as primary PM and
secondary PM, respectively. NAAQS have designated annual concentrations greater than 12µg/m3 and daily
concentrations greater than 35µg/m3 to be harmful.

1.3 Ozone

Like PM, Ozone (O3) has also been designated a standard under the NAAQS, and in 2015 it was revised to an
even more stringent standard [24]. Primary and secondary concentration of O3 higher than 0.070 parts per
million (ppm) averaged over an 8-hour daily period is considered harmful. Tropospheric O3 largely arises from
a series of reactions initiated by sun light, involving nitrogen dioxide (NO2) and volatile organic compounds
(VOCs). The availability of NO2 and VOCs in the lower atmosphere is largely influenced by anthropogenic
sources. Nitrogen oxide (NO) emissions from mobile and stationary combustion processes react with O3

and other radicals to form NO2, and VOCs can be directly emitted from the same combustion processes.
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Other anthropogenic emissions, such as SO2, can effect tropospheric O3 formation indirectly by affecting the
tropospheric chemistry that governs the availability of O3 precursors. Even PM has recently been linked to
influencing tropospheric O3 chemistry through radiative forcing feedback [25, 26, 27, 28, 29, 30, 31, 32, 33].

Impacts from O3 include environmental impacts and human health impacts. O3 can limit plant and crop
growth when they are exposed to higher levels of O3 [34], and human exposure to O3 has been linked to
impaired lung and cardiovascular functions [35, 36, 37].

With regards to our mobile source sector of interest contributing to combustion-related air pollution
emissions, PM2.5 contributions from aviation are expected to increase with LTO aircraft operations increasing
annual average concentrations of PM2.5 from 0.05% to 0.20% by 2025 [38]. An increase in aviation emissions
will lead to a larger impact on health with one study on 99 U.S. airports estimating an increase in premature
deaths due to aviation emissions from 75 deaths in 2005 to 460 deaths in 2025 [39]. Our study will look to
understand how aviation emissions during LTO operations affect the formation of PM2.5 and O3.

Chapter 2

Methods

2.1 Air Quality Modeling

In this work we utilize an Eulerian atmospheric chemical transport model (CTM) to quantify the concentra-
tion and transport of PM, O3, and other pollutants in a 36 × 36 km grid cell resolution domain. We assume
each chemical species in each grid cell to be well mixed and the model generates a concentration of each
chemical species at each time step. The Community Multiscale Air Quality modeling system (CMAQ) [40],
an Eulerian atmospheric CTM, has been used in this work.

Most Eulerian atmospheric CTMs calculate chemical species concentrations in each grid cell at each time
step by solving the advection-diffusion-reaction equation (Eq. 2.1).

dCi

dt
= −∇(~u Ci) +∇( ~K Ci) +Ri + Ei (2.1)

In the advection-diffusion-reaction equation, Ci is the concentration of a chemical species denoted with
subscript i, ~u is the wind field, ~K is the turbulence diffusivity tensor, Ri is the reaction rate of species i,
and Ei is the emission rate of chemical species i. This ordinary differential equation describes the change in
concentration of any chemical species in the model over time.

2.2 Decoupled Direct Method

Various sensitivity analyses in the atmospheric CTM framework are used for guiding policy and environ-
mental scenarios. One simple and commonly used method is the Brute Force method which relies on a
subtractive or finite-difference analysis approach. For this analysis, at least two model simulations are run
with one case having some input parameter varied and the other case is left unchanged. The difference
between the two cases describes the effect of the varied input parameter. This can be done for as many
scenarios as needed with each scenario requiring two model simulations.

The advantage of the Brute Force (BF) method is its simplicity. Most other sensitivity analyses methods
are compared with the BF method. Limitations of the BF method include the computational cost required
for performing multiple scenarios and the often noisy output concentrations that may arise when input
parameters are varied by small amounts. We use a sensitivity analysis method that can handle multiple
scenarios and reduce the noise from small variations. This method is known as the Decoupled Direct Method
in Three Dimensions (DDM-3D) [41, 42, 43].

While BF methods are performed with output from model simulations, DDM-3D is performed within the
model at each time step. Derivatives are taken at each time step which calculate the change in concentration
of a chemical species with respect to some change in an input parameter. In the CMAQ DDM-3D framework,
input parameters that can be varied include initial conditions, boundary conditions, emissions, and reaction
rates. Output from DDM-3D is in the form of sensitivity coefficients which express the derivatives taken at
each time step (Eq. 2.2).

2



2.3. HIGHER ORDER DECOUPLED DIRECT METHOD 3

S1
i,j =

∂Ci

∂Ej
(2.2)

Equation 2.2 shows the form of the sensitivity coefficient S as calculated in the DDM-3D analysis.
The superscript 1 denotes a first order change to some chemical species Ci with respect to a varying input
parameter Ej . In our case we will only concern ourselves with varying emission input parameters, as denoted
by E. These sensitivity coefficients will propagate through our model simulation and CMAQ DDM-3D
provides the solution to a modified advection-diffusion-reaction equation (Eq. 2.3).

∂S1
i,j

∂t
= −∇(~u S1

i,j) +∇( ~K S1
i,j) + Ji S

1
j + Ei (2.3)

The modified advection-diffusion-reaction equation is in terms of the first order sensitivity coefficients
S1
i,j and Ji denotes the i-th row of a Jacobian matrix of reaction rates. First order sensitivity coefficients

describe linear changes in concentrations with respect to changing emissions. In our case of air pollutants
attributable to aviation emissions, we need to be concerned with air pollutant species that may not be
linearly dependent on aviation emissions. The chemistry surrounding tropospheric PM2.5 and O3 formation
is far more complicated than what can be expressed with only first order changes. Hence, we will extend our
DDM-3D analysis framework to what is known as higher order decoupled direct method in three dimensions
(HDDM-3D) in order to calculate second order sensitivity coefficients. In doing so, we hope to capture more
of the chemistry related to PM2.5 and O3 formation from aviation emissions to understand how aviation
impacts air pollution.

2.3 Higher Order Decoupled Direct Method

Here we will outline two types of second order sensitivity coefficients. Full derivations of HDDM-3D can be
found in Hakami et. al 2003 [44] and Zhang et. al 2012 [45] with the latter paying special attention to the
treatment of Secondary Organic Aerosols (SOA) within the HDDM-3D framework.

One type of second order sensitivity coefficient is calculated by simply taking the second derivative of
Eq. 2.2 with respect to parameter Ej .

S2
i,j =

∂2Ci

∂E2
j

(2.4)

Eq. 2.4 is the second order change of a species Ci with respect to some varying input paramter Ej . The
second type of second order sensitivity coefficient relies on the separability of the partial differential equations
that govern atmospheric CTMs. HDDM-3D can also calculate second order cross-sensitivity coefficients that
describe the change in concentration of chemical species Ci with respect to two varying input parameters
Ej and Ek (Eq. 2.5).

S2
i,j,k =

∂2Ci

∂Ej∂Ek
(2.5)

The resulting advection-diffusion-reaction equation with second order cross-sensitivity coefficients can be
written in a simplified form as:

∂S2
i,j,k

∂t
= −∇(~u S2

i,j,k) +∇( ~K ∇S2
i,j,k) +

~Ji ~S
2
j,k + f(Ci, S

1
i,j , S

1
i,k, ~u, ~K,Ri, Ei).

(2.6)

In Eq. 2.6, superscripts 1 and 2 denote first order and second order sensitivity coefficients, respectively. ~Ji
is i-th row of a Jacobian matrix of reaction rates and ~S2

j,k is a vector of second order sensitivity coefficients.
For brevity, the function f contains the relationships between the concentration of species i, first order
sensitivity coefficients with respect to parameters j and k, the wind and turbulence diffusivity tensors, and
the reaction and emission rates of species i. In this general form, the equation can be applied to any varying
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Figure 2.1: Locations of the 2,106 active airports considered in our CONUS domain.

input parameter, not just changes to emissions. Details of this function f can be found in Eq. (9) in Hakami
et al. 2003 [44].

For our study, six precursor emissions that are responsible for the formation of PM2.5 and O3 are chosen
as sensitivity parameters for first order DDM-3D analyses. Three gas phase species; nitrogen oxides (NOX),
sulfur dioxide (SO2), volatile organic compounds (VOC), and three particle phase species; primary elemental
carbon (PEC), primary organic carbon (POC), and primary sulfate (PSO4) are directly emitted from aircrafts
and they all can lead to the formation of PM2.5 and O3 in the atmosphere. We limit our sensitivity parameters
for second order HDDM-3D analyses to the three gas phases species since these species are responsible for
secondary formation of pollutants in the atmosphere. Table 2.1 shows the species included in the CMAQ
simulation for our precursor emissions.

2.4 Domain

Our domain consists of the continental United States (CONUS) with a 148 × 112 grid of 36km × 36km
resolution. We utilize the FAA’s Aviation Emission Design Tool (AEDT) [46] for constructing aircraft flight
segments from the 2,106 active airports in the United States. Figure 2.1 shows all of the airports considered
in our domain. We consider only landing and takeoff flight segments; that is all flight segments below 3,000
ft. By considering only LTO operations, we are focusing our efforts on effects from aircraft emissions at a
regional level. And although our model simulation is performed with 34 vertical layers into the atmosphere,
we will consider DDM-generated sensitivities within the model at only the surface layer for the purpose of
understanding health impacts in populations located near airports.

LTO segments are processed into gridded emission rate files using AEDTProc [47]. Background emission
rates, defined to be all non-aviation related emissions, from EPA’s National Emissions Inventories (NEI-
2005) [48] are processed into gridded emission rate files using the Sparse Matrix Operator Kernal Emissions
(SMOKE) [49]. Meteorology data for 2005 is from the Weather Research and Forecasting model (WRF) [50],
with outputs downscaled from NASA’s Modern-Era Retrospective Analysis for Research and Applications
data (MERRA) [51]. 2005 Boundary conditions are derived from global CAM-chem simulations [52]. Sim-
ulations are performed for the months of January and July in 2005 with a 10 day spin up for each month.
January and July are chosen to approximately represent winter and summer characteristics seen during each
half of the year. Future work will expand the temporal domain over the entire year.

4
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Figure 2.2: Locations of the top 99 US airports responsible for the largest total fuel burn considered in our CONUS
domain. This is for purely illustrative purposes.

Group Model Species Name

NOX NO Nitric oxide
NO2 Nitrogen dioxide

HONO Nitrous acid
EC PEC Primary elemental carbon
OC POC Primary organic carbon
SO4 PSO4 Primary sulfate
SO2 SO2 Sulfur dioxide
VOC ALD2 Acetaldehyde

ALDX Ethene
ETHA Ethane
ETOH Ethanol
FORM Formaldehyde
IOLE Internal olefin bond

MEOH Methanol
OLE Terminal olefin bond
TOL Toluene-like
XYL Xylene-like

Table 2.1: Sensitivity parameters as defined in the model
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1st 
Order 
NOX

1st 
Order 
VOC

January July

January July
Figure 3.1: First order sensitivity calculations of O3 concentration (in ppbV) with respect to NOX emissions for the
months of January and July.

1st 
Order 
NOX

1st 
Order 
VOC

January July

January July

Figure 3.2: First order sensitivity calculations of O3 concentration (in ppbV) with respect to VOC emissions for the
months of January and July.

Chapter 3

Results

3.1 O3 First Order Response

We begin with calculating first order sensitivity coefficients as a way to estimate where nonlinearity, or second
order changes in concentration, is important in our domain. Beginning with O3 concentration sensitivities
to our aircraft percursor emissions, we can look at O3 first order sensitivities to NOX (90% NO, 9% NO2,
and 1% HONO for aviation emissions) and VOC aviation emissions.

Figures 3.1 and 3.2 show the DDM first order sensitivity coefficients for O3 sensitivity to NOX and VOC
emissions, respectively. Seasonal differences indicate a nonlinear concentration response to NOX emissions
with an indication of a possible chemical regime change in July. Chemical regime refers to whether an area
is considered to be NOX-limited or NOX-inhibited (VOC limited). Tropospheric O3 formation is predicated
by the availability of NOX and VOCs in a given region reacting with the OH radical [53]. And since NOX

and VOCs compete for available OH in the atmosphere, the O3 formation pathways can vary based on the
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2nd 
Order 
NOX

2nd 
Order 
VOC

January July

January July
Figure 3.3: Second order sensitivity calculations of O3 concentration (in ppbV) with respect to NOX emissions for
the months of January and July.

2nd 
Order 
NOX

2nd 
Order 
VOC

January July

January July

Figure 3.4: Second order sensitivity calculations of O3 concentration (in ppbV) with respect to NOX emissions for
the months of January and July.

January July

2nd 
Order 
Cross 

NOX and 
SO2 VOC

Figure 3.5: Second order sensitivity calculations of O3 concentration (in ppbV) with respect to NOX and VOC
emissions for the months of January and July.
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emissions of VOCs or NOX in a region. Regions with high NOX emissions leading to O3 formation are deemed
NOX-inhibited (VOC-limited) and are often highly localized to urban regions. Regions where available VOCs
are comparable to available NOX are deemed NOX-limited and tend to categorize most suburban to rural
areas. However, it is not the case that simply reducing emissions of NOX in a NOX-inhibited regime or
reducing VOCs in a NOX-limited regime will lead to reductions of O3. Due to the nonlinearity of O3

production pathways, emission control strategies for reducing O3 differ based on which chemical regime one
may be in. EKMA diagrams were one of the first analyses to show how O3 concentrations change with
reductions of NOX and VOCs in NOX-inhibited and NOX-limited regimes [54]. They rely on knowing the
O3 concentrations for varying amounts of NOX and VOCs in a given region. This makes them hard to
replicate from a modeling perspective since each varied amount of NOX and VOCs require an additional
modeling simulation. DDM and HDDM is advantageous in this respect [55, 56, 44] since their outputs allow
for a comprehensive understanding of how O3 concentrations change with respect to varying NOX and VOC
emissions across our domain. Chemical regimes will be indicated by how O3 either increases or decreases
with respect to increasing or decreasing NOX and VOC emissions.

Negative first order sensitivity coefficients with respect to NOX emissions in the immediate proximity of
the major U.S. airports indicate a NOX-inhibited regime for January and July. However, regions of positive
first order sensitivity coefficients (Downwind of SFO, LAX, ATL) in the month of July indicate a shift to
a NOX-limited regime. First order sensitivity to VOC emissions exhibits a largely linear behavior with
positive first order sensitivity coefficients across the entire domain. Hence, using first order DDM analyses,
we can estimate where nonlinear changes in O3 become important. In our case, this nonlinearity represents
a chemical regime change downwind of larger urban airports.

3.2 O3 Second Order Response

Figures 3.3 and 3.4 show the HDDM second order sensitivity coefficients for O3 sensitivity to NOX and
VOC, respectively. As we had anticipated from the first order responses to VOC emissions, O3 concentration
response is mostly linear and second order sensitivity coefficients are one to two orders in magnitude smaller
than first order sensitivity coefficients. Nonlinearity can be seen in the immediate vicinity of Los Angeles
and downwind of LAX in the month of July.

Lastly, we can examine the second order cross-sensitivity of O3 concentration response to both NOX and
VOC emissions. Figure 3.5 shows the HDDM second order cross-sensitivity coefficients for O3 sensitivity
to NOX and VOC emissions in our domain. Cross-sensitivity responses are inherently more complicated to
conceptualize, with the concentration response now determined by variations of two types of emissions. This
becomes important for describing the formation of O3 in terms of which chemical regime, NOX-limited or
NOX-inhibited, one may be concerned with. In a NOX-limited regime, O3 production (denoted as PO3) is
linearly dependent on NO (Eq. 3.1).

PO3
∼ NO (3.1)

In a NOX-inhibited regime, O3 formation is linearly dependent on VOCs and inversely dependent on
NO2.

PO3
∼ V OC

NO2
(3.2)

In our case, we can clearly distinguish NOX-limited and NOX-inhibited regimes by looking at cross-
sensitivity coefficients. If we consider LAX and the region downwind, our second order cross-sensitivity
coefficients are negative in the immediate area surrounding LAX and positive downwind. And since we know
our first order sensitivity coefficients to NOX to be one to two orders of magnitude higher than our sensitivity
coefficients to VOC, the region immediately surrounding LAX is NOX-inhibited while the rural downwind
area is NOX-limited. The transition between regimes can be seen with our nonzero second order sensitivity
coefficients. NOX availability governs O3 formation and NOX emissions from aircrafts are responsible for
the highest degree of nonlinear behavior when considering O3 precursor emissions from aircrafts.
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3.3 PM2.5 First Order Response

Figure 3.6 and 3.7 show PM2.5 first order sensitivity coefficients with respect to our six varying precursor
emissions: NOX, SO2, VOC, PEC, POC, and PSO4. Although we have emissions from 2,106 airports in our
domain, significant impacts (values on the order of 10−3) are seen at only major airports (Fig. 2.2). This
can be seen by looking at PM2.5 sensitivities to our particle phase species, PEC, POC, or PSO4 where the
impact on PM formation from these precursors are highly localized to the points of emission; in this case,
the major airports (Fig. 3.7). This PM formation can be considered primary while PM2.5 sensitivities to
NOX, SO2, and VOC are significant up to several hundred kilometers from the emission source indicative of
secondary PM formation.

1st 
Order 
NOX

January July

1st 
Order 
SO2

1st 
Order 
VOC

Figure 3.6: First order sensitivity calculations of PM2.5

concentration (in µg/m3) with respect to NOX, SO2, and
VOC emissions for the months of January and July.

1st 
Order 
PEC

January July

1st 
Order 
POC

1st 
Order 
PSO4

Figure 3.7: First order sensitivity calculations of PM2.5

concentration (in µg/m3) with respect to PEC, POC,
and PSO4 emissions for the months of January and July.

Seasonal differences indicate larger first order sensitivity coefficients across all precursor emissions in the
month of July than January. The only significant negative first order sensitivities are seen with respect
to NOX emissions. In January, large areas of negative first order sensitivity coefficients are seen in the
southeast U.S. stretching up the coast. In July, this same region becomes positive and the few areas that
exhibit negative first order coefficients are Los Angeles and downwind of LAX, the Miami area, Chicago,
and San Francisco.

3.4 PM2.5 Second Order Response

Figure 3.8 shows the second order sensitivity coefficients for PM2.5 with respect to NOX, SO2, and VOC
emissions. We can see the most second order impact of PM2.5 with respect to NOX emissions. And al-
though aircrafts are not direct emitters of ammonia (NH3), availability of NH3 can affect the partitioning
of secondarily formed nitrate into particle phase owing to the overall PM2.5 formation [57]. One work has
studied how the availability of NH3 impacts aviation-attributable emissions [38]. NH3 availability affecting
the partitioning of secondarily formed nitrate into particle phase is evident by looking at NOX nonlinear
sensitivities in regions where background NH3 is available to affect nitrate formation, such as the southeast
U.S. and the midwest U.S. during winter months.

Similar to NH3 availability affecting secondary nitrate formation, oxidant availability can affect secondary
sulfate and nitrate formation. This arises through indirect effects often attributable to sensitivities to two
or more precursors. HDDM becomes a perfect method for capturing these indirect effects by calculating
sensitivities to multiple inputs. Figure 3.9 shows the second order cross-sensitivity coefficients for PM2.5

with respect to NOX and SO2 and NOX and VOC emissions. Availability of oxidants such as HOX radicals
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2nd 
Order 
NOX

January July

2nd 
Order 
SO2

2nd 
Order 
VOC

Figure 3.8: Second order sensitivity calculations of PM2.5 concentration (in µg/m3)
with respect to NOX, SO2, and VOC emissions for the month of January and July.

2nd 
Order 
Cross 

NOX and 
VOC

January July

2nd 
Order 
Cross 

NOX and 
SO2

Figure 3.9: Second order cross-sensitivity calculations of PM2.5 concentration (in
µg/m3) with respect to NOX and SO2 emissions, and NOX and VOC emissions for
the month of January and July.



(HOX = OH+peroxy) and O3 leading to oxidation of SO2 can limit sulfate formation and add to the overall
PM2.5. If SO2 emissions are reduced in this oxidant limiting case, more oxidants are available to convert
SO2 from other sources [57]. The oxidant limiting case is important for aircraft emissions because we are
concerned with changes in SO2 emissions that are small when compared to other SO2 sources seen on the
east coast. Oxidant limiting effects are also temperature dependent and we can see this with our second order
cross-sensitivity coefficients for NOX and SO2 emissions for January and July. With lower temperatures in
January, more nitric acid (HNO3) can dissolve into water which means NOX aircraft emission reductions
also reduces the aqueous phase acidity. This then increases sulfate formation as more SO2 dissolves and
then oxidizes in the aqueous phase [57]. With higher temperatures in July, oxidant availability is limited
by reducing NOX emissions, leading to less oxidation of SO2 and sulfate formation beyond sulfate reduction
through SO2 emissions reduction alone. We can see these seasonal differences in figure 3.9 with July showing
a large area of negative cross sensitivities to NOX and SO2 emissions in the Ohio valley stretching over to
the east coast and an area of positive cross sensitivities to NOX and SO2 emissions downwind of LAX where
SO2 background emissions are considerably less.

Although the effects are smaller, oxidant availability altered by reductions in NOX emissions can also
effect secondary organic aerosols formed through oxidation of VOC emissions. We can see this nonlinear
behavior in figure 3.9 for PM2.5 cross sensitivities to NOX and VOC aircraft emissions. Therefore, NOX

emissions are responsible for the largest amount of nonlinear behavior.

Chapter 4

Attainment Analyses

4.1 Emission Reductions

The true power of these sensitivity coefficients and the decoupled direct method in general, is its ability to
estimate changes in pollutant concentrations with respect to emission reductions by only performing one
model simulation. This allows for a quick and accurate way to understand how emission reductions will
impact air pollutant concentrations. First and second order sensitivity coefficients can be used in simple
Taylor series approximations to estimate some change in pollutant concentration, Ci, with respect to some
change in emissions, ∆εj (Eq. 4.1) [44].

Ci(∆εj) = Ci(0) + ∆εjS
1
i,j(0) +

∆ε2j
2
S2
i,j(0) (4.1)

130 airports in the United States are currently located in areas designated as being in nonattainment of
the EPA’s NAAQ standards [59]. Figure 4.1 shows the locations of these 130 airports (4 located in Alaska
are not shown). The airports located in regions of nonattainment of these standards pose a risk to public
health by contributing to the amount of air pollutants in the region. And as aviation continues to grow
as an emission sector, aviation-related health impacts will affect areas already in nonattainment. We can
use DDM-3D analyses to look at the effects from individual airports. First order sensitivity coefficients
were calculated for emissions from five individual airports: Chicago O’Hare International Airport (ORD),
Hartsfield-Jackson Atlanta International Airport (ATL), Denver International Airport (DEN), Los Angeles
International Airport (LAX), and John F. Kennedy International Airport (JFK). Table 4.1 shows the first
order sensitivity coefficients for each precursor emission species. Second order sensitivity coefficients were
calculated as well with table 4.2 showing second order sensitivity coefficients for all gas phase species of
interest, and table 4.3 showing second order sensitivity order cross-sensitivity coefficients to NOX and SO2

emissions and NOX and VOC emissions. These coefficients are values calculated at each of the airport’s home
grid cell, referring to impacts that would be seen within that grid cell. Hence, these coefficients can vary for
regions surrounding the airport’s grid cell and need to be considered when considering large populations that
may be downwind of airports where the coefficient may represent secondary chemistry and meteorological
impacts.

We can perform a Taylor series expansion with these sensitivity coefficients to estimate the amount of
emission reductions needed to bring a region that is in nonattainment of PM2.5 standards into attainment.
If we imagine the region immediately surrounding Chicago O’Hare airport (ORD’s home grid cell) to be
in nonattainment with a concentration of PM2.5 of 14 µg/m3, we can estimate the amount of emission

11
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Figure 4.1: Locations of the 130 airports in regions designated as being in nonattainment by the EPA [58]

reductions needed for a decrease of 2µg/m3. Sensitivities in January are assumed to be the same for six
months of the year and sensitivities in July are assumed to be the same for the other six months of the
year. Using only first order sensitivity coefficients to our precursor emissions and Eq. 4.1, we would need to
decrease emissions by 11.77 times in the Chicago O’Hare airport grid cell to decrease the concentration of
PM2.5 by 2 µg/m3. We expect larger effects to be seen by including second order sensitivity coefficients for
O3 reductions and PM2.5 reductions in airports like Los Angeles International where second order coefficients
are all negative for gas phase species. Table 4.4 shows the emission reductions needed to decrease PM2.5 by
2 µg/m3 for each of our five airports.

Equations 4.2 through 4.4 show how the emission amounts were calculated for our individual airports’
sensitivity coefficients. We show the first order calculations with respect to our precursor emissions. Equa-
tion 4.2 shows the amount of emission reduction needed, ∆ε, to bring a region into attainment where
CPM2.5(∆ε) = 2 µg/m3 when we only consider first order sensitivities to our precursor emissions, S1

PM2.5
.

Equation 4.4 shows the approximate yearly first or second (denoted with boldface superscripts 1,2, while
normal expressions raised to a power are not boldfaced) sensitivity coefficients with values from tables 4.1
and 4.2. Future work will utilize equation 4.3. This is the same calculation but it now includes the second
order term in the Taylor series expansion which takes into account second order sensitivities.

CPM2.5
(∆ε) = ∆εS1

PM2.5
(4.2)

CPM2.5(∆ε) = ∆εS1
PM2.5

+
∆ε2

2
S2
PM2.5

(4.3)

S1,2
PM2.5

= 6
[
S1,2
PM2.5,NOx

+ S1,2
PM2.5,SO2

+ S1,2
PM2.5,VOC + S1,2

PM2.5,POC + S1,2
PM2.5,PEC + S1,2

PM2.5,PSO4

]
JAN

+6
[
S1,2
PM2.5,NOx

+ S1,2
PM2.5,SO2

+ S1,2
PM2.5,VOC + S1,2

PM2.5,POC + S1,2
PM2.5,PEC + S1,2

PM2.5,PSO4

]
JUL

(4.4)
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ORD ATL DEN LAX JFK
January July January July January July January July January July

O3 to
NOx

−0.219 −0.315 −0.344 −0.361 −0.238 −0.227 −0.192 −0.617 −0.214 −0.827∗

O3 to
VOC

0.006 0.010 0.005 0.018 0.003 0.014 0.006 0.019 0.001∗ 0.055

PM2.5 to
NOx

4.626 × 10−5∗ −0.003 −0.003 −0.002∗ −0.001 −0.002 0.002 −0.003 −0.001 −0.014

PM2.5 to
SO2

0.010 0.002 0.009 0.007 3.940 × 10−4∗ 0.002 0.002 0.003∗ 0.002 0.006

PM2.5 to
VOC

0.002 2.773 × 10−4 0.001∗ 4.580 × 10−4 0.001 2.118 × 10−4 0.005 0.002 0.001 0.003

PM2.5 to
PEC

0.004 0.002 0.004 0.005 0.003 0.002 0.006 0.005 0.001 0.004

PM2.5 to
POC

0.002 0.001 0.002 0.003 0.003 0.002 0.003 0.003 0.001 0.004

PM2.5 to
PSO4

0.005 0.003 0.005 0.008 0.004 0.003 0.011 0.009 0.002 0.010

Table 4.1: First order sensitivity coefficients of O3 (ppb) and PM2.5 (µg/m3) at each airport’s home cell. ∗ Respective maximum or minimum not located in
airport home grid cell

ORD ATL DEN LAX JFK
January July January July January July January July January July

O3 to
NOx

0.008 0.002 0.013 0.014 0.009 0.001 0.006 0.017 0.004 0.047

O3 to
VOC

2.341 × 10−5 4.949 × 10−6 3.279 × 10−5 9.873 × 10−6 1.005 × 10−5 8.885 × 10−6 5.414 × 10−5 1.567 × 10−4 5.079 × 10−6 1.677 × 10−4

PM2.5 to
NOx

1.287 × 10−4 5.609 × 10−5 2.417 × 10−5 1.037 × 10−4 1.009 × 10−5 −1.857 × 10−5 −1.071 × 10−4 −2.018 × 10−4 2.134 × 10−4 1.169 × 10−3

PM2.5 to
SO2

−1.623 × 10−4 −8.514 × 10−7 −7.167 ×1 0−5 −2.714 × 10−5 −1.133 × 10−7 −4.943 × 10−8 −2.502 × 10−7 −7.939 × 10−7 −2.027 × 10−5 −2.995 × 10−5

PM2.5 to
VOC

−2.475 × 10−5 −1.460 × 10−7 −3.239 × 10−6 −8.227 × 10−7 −1.677 × 10−6 −2.789 × 10−7 4.654 × 10−6 1.573 × 10−6 −1.751 × 10−6 −2.479 × 10−6

Table 4.2: Second order sensitivity coefficients of O3 (ppb) and PM2.5 (µg/m3) at each airport’s home cell.
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ORD ATL DEN LAX JFK
January July January July January July January July January July

O3 to
NOx

and VOC
−2.179 × 10−4 −1.619 × 10−5 −2.329 × 10−4 3.010 × 10−5 −8.713 × 10−5 −8.476 × 10−5 −3.658 × 10−4 −0.001 −4.325 × 10−5 −0.002

PM2.5 to
NOx

and SO2

−9.282 × 10−6 −2.378 × 10−5 −3.461 × 10−5 −2.581 × 10−5 −4.518 × 10−6 −1.631 × 10−5 −1.531 × 10−5 −5.495 × 10−5 −9.706 × 10−6 −1.087 × 10−4

PM2.5 to
NOx

and VOC
−3.040 × 10−5 7.438 × 10−7 −2.084 × 10−5 −1.051 × 10−6 −1.169 × 10−5 1.113 × 10−6 −4.583 × 10−5 −3.087 × 10−5 −2.435 × 10−5 −1.193 × 10−4

Table 4.3: Second order cross-sensitivity coefficients of O3 (ppb) and PM2.5 (µg/m3) at each airport’s home cell.

∆ε ORD ATL DEN LAX JFK

First order
All precursors

11.77 8.00 18.41 7.05 16.86

Table 4.4: Emission reductions needed to reduce PM2.5 concentrations by 2 µg/m3 at each airport’s home grid cell.



Chapter 5

Conclusion

5.1 Conclusions and Future Work

We have utilized HDDM-3D as implemented in CMAQ to quantify the impacts of both NAS-wide aviation
emissions and airport-specific aviation emissions on the formation of PM2.5 and O3. In this way, we can
develop a deeper understanding of how varying aviation emissions may impact regional air quality and public
health. The application of sensitivity coefficients to individual airports and precursor species allows for a more
tailored approach in assessing health impacts as the aviation sector continues to grow. We found that 8.00,
18.41, 16.86, 7.05, and 11.77 times fewer emissions are needed at Hartsfield-Jackson Atlanta International
Airport (ATL), Denver International Airport (DEN), John F. Kennedy International Airport (JFK), Los
Angeles International Airport (LAX), and Chicago O’Hare International Airport (ORD), respectively to
decrease concentrations of PM2.5 from nonattainment levels of 14 µg/m3 to attainment levels of 12 µg/m3

when considering all aviation precursors to PM2.5. A 2 µg/m3 decrease in PM2.5 is a large target to achieve
when considering aviation emissions. This is why calculated emission reductions are large in our analysis.
Since aircraft emissions are usually less than 1-5% of county-wide NOX emissions, the general ranges of
emissions reductions will be commensurate. We plan to expand this analysis for more airports in regions
of nonattainment, as well as airports that are in regions of attainment to quantify the effects of aviation in
relatively clean areas of the country. This will be done with 2011 emission data. We also plan to extrapolate
our individual airport emission sensitivity results to sensitivities from aviation fuel burn. This can be used
to help policy makers easily relate to aircraft operations at a given airport while designing effective policies.
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