Objectives: Gene Organization

- Describe the composition of gene and its organization
- Describe DNA and RNA composition
- Know how DNA replication takes place
- Describe different types of mutations
- Understand the recombination mechanism

Genome

- The hereditary basis of every living organism is its genome.

 - a long sequence of deoxyribonucleic acid (DNA) that provides the complete set of **hereditary information** carried by the organism as well as its individual cells.
 - Chromosomal DNA
 - Organellar DNA
 - (i.e. mitochondrial DNA & Chloroplast DNA)
• Genome can be divided into a number of different DNA molecules, or chromosomes.

A unit of the genome carrying many genes.

A gene encodes an RNA, which can encode a polypeptide

The organization of genes on a human chromosome

DNA is the genetic material of bacteria

The nucleotide sequence of the human genome shows how our genes are arranged.

• The idea that the genetic material of organisms is DNA has its roots in the discovery of transformation by Frederick Griffith in 1928.

• Some property of the dead IIIS bacteria can transform the live IIR bacteria so that they make the capsular polysaccharide and become virulent.

This was called the “transforming principle”.

Pneumococcus types

Injection of cells

Result

<table>
<thead>
<tr>
<th>Pneumococcus types</th>
<th>Injection of cells</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capsule smooth (S)</td>
<td>Living S</td>
<td>Dies</td>
</tr>
<tr>
<td>Appearance</td>
<td>Heat-killed S</td>
<td>Lives</td>
</tr>
<tr>
<td></td>
<td>Living R</td>
<td>Lives</td>
</tr>
<tr>
<td>No capsule</td>
<td>Heat-killed S</td>
<td>Dies</td>
</tr>
<tr>
<td>rough (R)</td>
<td>Living R</td>
<td></td>
</tr>
</tbody>
</table>
The genetic material of phage T2 is DNA

General nature of the genetic material is that it is always nucleic acid; specifically, it is DNA, except in the RNA viruses.

Only the DNA of the parent phages
- enters the bacteria
- becomes part of the progeny phages.

DNA is the genetic material of the genome of living cells or virus.

What is the constitution of DNA?

Polynucleotide chains have nitrogenous bases linked to a sugar–phosphate backbone

A nucleotide consists of
1. a nucleoside linked to
2. a phosphate group on either the 5’ or 3’ carbon of
3. the (deoxy)ribose.

The difference between DNA and RNA is in the group at the 2’ position of the sugar,
- DNA has a deoxyribose sugar (2’–H)
- RNA has a ribose sugar (2’–OH).
DNA contains the four bases:

1. A: adenine,
2. G: guanine,
3. C: cytosine, and
4. T: thymine.

RNA has U (uracil) instead of thymine.

DNA Is a Double Helix

A spiral consisting of two strands in the surface of a cylinder that coil around its axis.

The double helix maintains a constant width because **purines always face pyrimidines** in the complementary A-T and G-C base pairs.

Flat base pairs lie perpendicular to the sugar-phosphate backbone

- The diameter of the double helix is 20 Å.
- There is a complete turn every 34 Å, with 10 base pairs per turn (about 10.4 base pairs per turn in solution).
- The double helix has a major (wide) groove and a minor (narrow) groove.

DNA replication is semiconservative

DNA replication accomplished by

1. separation of the strands of a parental duplex
2. each strand then acting as a template for synthesis of a complementary strand.

Base pairing provides the mechanism for replicating DNA.
The sequences of the daughter strands are determined by complementary base pairing with separated parental strands.

Polymerases act on separated DNA strands at the replication fork

- Replication of DNA is undertaken by a complex of enzymes that separate the parental strands and synthesize the daughter strands.
- Denaturation – separation of the two strands due to breaking of hydrogen bonds between bases.
- Renaturation – reassociation of denatured complementary single strands of a DNA double helix.

Nucleases

- Enzymes that degrade nucleic acids;
- Include DNases and RNases and can be categorized as endonucleases or exonucleases.

Genetic information can be provided by DNA or RNA

- DNA can converted into RNA by transcription.
- RNA may be converted into DNA by reverse transcription.
- RNA polymerase – enzyme that synthesizes RNA using a DNA template.
Central Dogma:

- Information **cannot** be transferred from protein → protein or protein → nucleic acid,
- But can be transferred between nucleic acids and from nucleic acid to protein.
- The translation of RNA into protein is **unidirectional**.

Information in nucleic acid can be perpetuated or transferred, but the transfer of information into a polypeptide is irreversible.

Nucleic Acids Hybridize by Base Pairing

- Heating causes the two strands of a DNA duplex to separate.
- The melting temperature (T_m) is the midpoint of the temperature range for denaturation.
- Complementary single strands can renature or anneal when the temperature is reduced.

Denatured single strands of DNA can renature to give the duplex form.

The Genetic Code Is Triplet

- The genetic code is read in triplet nucleotides called **codons**.
- The triplets are non-overlapping and are read from a fixed starting point.

- Mutations that insert or delete individual bases cause a shift in the triplet sets after the site of mutation; these are **frameshift mutations**.

- Combinations of mutations that together insert or delete three bases (or multiples of three) insert or delete amino acids, but do not change the reading of the triplets beyond the last site of mutation.
Every coding sequence has 3 possible reading frames

- Usually only one of the 3 possible reading frames is translated and the other 2 are closed by frequent termination signals.
- Open reading frame (ORF) – A sequence of DNA consisting of triplets that can be translated into amino acids starting with an initiation codon and ending with a termination codon.
- Closed (blocked) reading frame – A reading frame that cannot be translated into polypeptide because of the occurrence of termination codons.
- Unidentified reading frame (URF) – An open reading frame with an as yet undetermined function.

Several processes are required to express the product of a gene

- A typical bacterial gene is expressed by transcription into mRNA and then by translation of the mRNA into polypeptide.
- Gene expression – The process by which the information in a sequence of DNA in a gene is used to produce an RNA or polypeptide, involving transcription and (for polypeptides) translation.

Several processes are required to express the product of a gene

Each mRNA consists of a untranslated 5' region (5' UTR or leader), a coding region, and an untranslated 3' UTR or trailer.

- In eukaryotes, a gene may contain introns that are not represented in the polypeptide product.
- Introns are removed from the pre-mRNA transcript by splicing to give an mRNA that is colinear with the polypeptide product.
Terms often used in the process of gene expression

- **RNA processing** – Modifications to RNA transcripts of genes. This may include alterations to the 3' and 5' ends and the removal of introns.
- **pre-mRNA** – The nuclear transcript that is processed by modification and splicing to give an mRNA.
- **exon** – Any segment of an interrupted gene that is represented in the mature RNA product.
- **ribosome** – A large assembly of RNA and proteins that synthesizes polypeptides under direction from an mRNA template.
- **ribosomal RNAs (rRNAs)** – A major component of the ribosome.
- **transfer RNA (tRNA)** – The intermediate in polypeptide synthesis that interprets the genetic code.
 - Each tRNA molecule can be linked to an amino acid.
 - A tRNA has an anticodon sequence that is complementary to a triplet codon representing the amino acid.

Proteins are trans-acting but sites on DNA are cis-acting

- All gene products (RNA or polypeptides) are trans-acting. They can act on any copy of a gene in the cell.

List 2 new things you have learnt today

Kahoot! 9, no award point