Mixed strategy Nash equilibrium

Felix Munoz-Garcia

Strategy and Game Theory - Washington State University

Looking back...

- So far we have been able to find the NE of a relatively large class of games with complete information:
 - Games with two or several (n > 2) players.
 - Games where players select among discrete or continuous actions.
- But, can we assure that all complete information games where players select their actions simultaneously have a NE?
 - We couldn't find a NE for the matching pennies game!! (Next slide)
 - We will be able to claim existence of a NE if we allow players to randomize their actions.

Remembering the "matching pennies" game...

• Recall that this was an example of an anti-coordination game:

		F	2
		Head	Tail
P_1	Head	<u>1</u> , -1	-1, <u>1</u>
	Tail	-1, <u>1</u>	<u>1</u> , -1

Indeed, there is no strategy pair in which players select a particular action 100% of the times.

• We need to allow players to randomize their choices.

Another example

 Here we have another example of an anti-coordination game with no psNE:

Surprise!		Drug Dealer		
	\ <u>\</u>	Street Corner	Park	
Police	Street Corner	<u>80</u> , 20	0, <u>100</u>	
Officer	Park	10, <u>90</u>	<u>60</u> , 40	

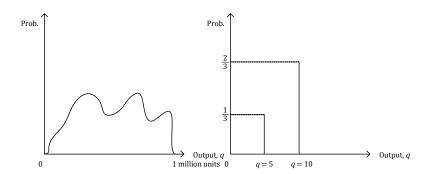
 We need to allow players randomize their choices (i.e., to play mixed strategies).

Mixed strategy Nash equilibrium

- Harrington: Chapter 7, Watson: Chapter 11.
- First, note that if a player plays more than one strategy with strictly positive probability, then he must be indifferent between the strategies he plays with strictly positive probability.
- **Notation**: "non-degenerate" mixed strategies denotes a set of strategies that a player plays with strictly positive probability.
 - Whereas "degenerate" mixed strategy is just a pure strategy (because of degenerate probability distribution concentrates all its probability weight at a single point).

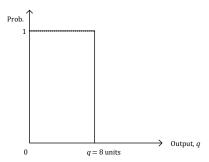
Degenerate Probability Distributions

• Example of non-degenerate probability distributions



Degenerate Probability Distributions

• Example of a degenerate probability distribution



• The player (e.g., firm) puts all probability weight (100%) on only one of its possible actions: q = 8.

Definition of msNE:

• Consider a strategy profile $\sigma = (\sigma_1, \sigma_2, ..., \sigma_n)$ where σ_i is a mixed strategy for player i. σ is a msNE if and only if

$$u_i(\sigma_i,\sigma_{-i}) \geq u_i(s_i',\sigma_{-i})$$
 for all $s_i' \in S_i$ and for all i

• That is, σ_i is a best response of player i to the strategy profile σ_{-i} of the other N-1 players, $\sigma_i = BR_i(\sigma_{-i})$.

- Notice that we wrote $u_i(\sigma_i, \sigma_{-i}) \ge u_i(\mathbf{s}'_i, \sigma_{-i})$ instead of $u_i(\sigma_i, \sigma_{-i}) \ge u_i(\sigma'_i, \sigma_{-i})$.
- Why? If a player was using σ'_i , then he would indifferent between all pure strategies to which σ'_i puts a positive probability, for example \hat{s}_i and \check{s}_i .
 - That is why it suffices to check that no player has a profitable pure-strategy deviation.

Example 1: Matching pennies

Matching pennies

- Two alternative interpretations of players' randomization:
 - If player 1 is using a mixed strategy, it must be that he indifferent between Heads and Tails
 - Alternatively, if player 1 is indifferent between Heads and Tails, it must be that player 2 mixes with such probability q such that player 1 is made indifferent between Heads and Tails:

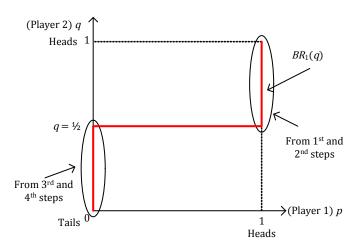
$$EU_1(H) = EU_1(T) \iff 1q + (1-q)(-1) = (-1)q + 1(1-q)$$

 Matching pennies (example of a normal form game with no psNE):

Solving for the EU comparison, we obtain

$$EU_1(H)=EU_1(T)\iff 1q+(1-q)(-1)=(-1)q+1(1-q)$$
 $q=rac{1}{2}\longrightarrow {\sf Graphical\ Interpretation}$

- How to interpret this cutoff of $q = \frac{1}{2}$ graphically?
 - We know that if $q > \frac{1}{2}$, then player 2 is very likely playing Heads. Then, player 1 prefers to play Heads as well (p = 1).
 - Alternatively, note that $q>\frac{1}{2}$ implies $EU_1(H)>EU_1(T)$.
 - ② Go to the figure on the next slide, and draw p=1 for every $q>\frac{1}{2}$.
 - § If $q < \frac{1}{2}$, player 2 is likely playing Tails. Then, player 1 prefers to play Tails as well (p = 0).
 - Graphically, draw p = 0 for every $q < \frac{1}{2}$.



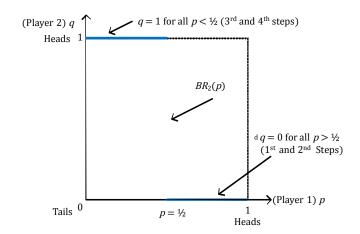
 Similarly, if player 2 is using a mixed strategy, it must be that he is indifferent between Heads and Tails:

$$\textit{EU}_2(\textit{H}) = \textit{EU}_2(\textit{T})$$

$$(-1)p + 1(1-p) = 1p + (-1)(1-p) \iff p = \frac{1}{2}$$

• (See figure after next slide)

- Player 2
 - We know that if $p > \frac{1}{2}$, player 1 is likely playing heads. Then player 2 wants to play tails instead, i.e., q = 0.
 - ② Go to the figure on the next slide, and draw q=0 for all $p>\frac{1}{2}$.
 - If $p < \frac{1}{2}$, player 1 is likely playing tails. Then player 2 wants to play heads, i.e., q = 1.
 - Graphically, draw q = 1 for all $p < \frac{1}{2}$.



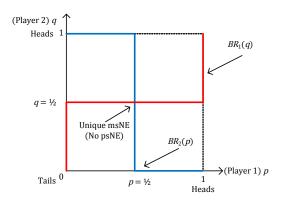
- We can represent these BRFs as follows:
 - Player 1

$$extit{BR}_1(q) = \left\{egin{array}{l} ext{Heads if } q > rac{1}{2} \ ext{Heads, Tails}
ight\} ext{if } q = rac{1}{2} \ ext{Tails if } q < rac{1}{2} \end{array}
ight.$$

- Player 1 is indifferent between Heads and Tails when q is exactly $q=\frac{1}{2}$
- Player 2

$$BR_2(p) = \left\{ egin{array}{l} ext{Tails if } p > rac{1}{2} \ ext{Heads, Tails} ext{ if } p = rac{1}{2} \ ext{Heads if } p < rac{1}{2} \end{array}
ight.$$

• Player 2 is indifferent between Heads and Tails when p is exactly $p = \frac{1}{2}$



- **Player 1**: When $q > \frac{1}{2}$, Player 1 prefers to play Heads (p = 1); otherwise, Tails.
- **Player 2**: When $p > \frac{1}{2}$, Player 2 prefers to play Tails (q = 0); otherwise, Heads.

Therefore, the msNE of this game can be represented as

$$\left\{ \left(\frac{1}{2}H,\frac{1}{2}T\right),\left(\frac{1}{2}H,\frac{1}{2}T\right)\right\}$$

where the first parenthesis refers to player 1(row player), and the player 2(column player).

2. **Battle of the sexes** (example of a normal form game with 2 psNE already!):

$$\begin{array}{c|c} & Wife \\ q & 1 \cdot q \\ \hline Football & Opera \\ \hline \\ Husband \\ 1 \cdot p & Opera \\ \hline \end{array} \begin{array}{c|c} 0,0 \\ \hline 0,0 \\ \hline \end{array} \begin{array}{c|c} 1 \cdot q \\ \hline 0,0 \\ \hline \end{array}$$

If the Husband is using a mixed strategy, it must be that he indifferent between Football and Opera:

$$EU_1(F) = EU_1(O)$$

$$3q + 0(1-q) = 0q + 1(1-q)$$

$$3q = 1-q$$

$$4q = 1 \Longrightarrow q = \frac{1}{4}$$

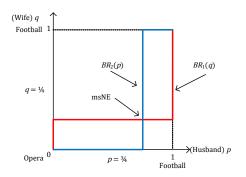
Similarly, if the Wife is using a mixed strategy, it must be that she is indifferent between Football and Opera:

$$EU_2(F) = EU_2(O)$$

$$\left. \begin{array}{ccc} & & \\ & & \\ & & \\ P & = & \frac{3}{4} \end{array} \right.$$
 Practice!

Therefore, the msNE of this game can be represented as

$$\mathsf{msNE} = \left\{ \underbrace{\left(\frac{3}{4}F, \frac{1}{4}O\right)}_{\mathsf{Husband}}, \underbrace{\left(\frac{1}{4}F, \frac{3}{4}O\right)}_{\mathsf{Wife}} \right\}$$



- **Husband:** When $q > \frac{1}{4}$, he prefers to go to the Football game (p = 1); otherwise, the Opera.
- Wife: When $p > \frac{3}{4}$, she prefers to go to the Football game (q = 1); otherwise, the Opera.

- Best Responses for Battle of the Sexes are hence:
 - Player 1 (Husband)

$$BR_1(q) = \left\{egin{array}{l} ext{Football if } q > rac{1}{4} \ ext{Football, Opera} ext{ if } q = rac{1}{4} \ ext{Opera if } q < rac{1}{4} \end{array}
ight.$$

• Player 2 (Wife)

$$\mathit{BR}_2(p) = \left\{ egin{array}{l} \mathsf{Football} \ \mathsf{if} \ p > rac{3}{4} \\ \mathsf{Football}, \ \mathsf{Opera} \} \ \mathsf{if} \ p = rac{3}{4} \\ \mathsf{Opera} \ \mathsf{if} \ p < rac{3}{4} \end{array}
ight.$$

- Note the differences in the cutoffs: They reveal each player's preferences.
 - Husband: "I will go to the football game as long as there is a slim probability that my wife will be there."
 - **Wife:** "I will only go to the football game if there is more than a 75% chance my husband will be there."

Prisoner's Dilemma

3. Prisoner's Dilemma (One psNE, but are there any msNE?):

If the first player is using a mixed strategy, it must be that he indifferent between Confess and Not Confess:

$$EU_{1}(C) = EU_{1}(NC)$$

$$-5q + 0(1-q) = -15q + (-1)(1-q)$$

$$-5q = -15q - 1 + q$$

$$9q = -1 \implies q = -\frac{1}{9}?$$

Prisoner's Dilemma

 Similarly, if player 2 is using a mixed strategy, it must be that she is indifferent between Confess and Not Confess:

$$EU_{2}(C) = EU_{2}(NC)$$

$$-5p + 0(1-p) = -15p + (-1)(1-p)$$

$$-5p = -15p - 1 + p$$

$$9p = -1 \implies p = -\frac{1}{0}$$

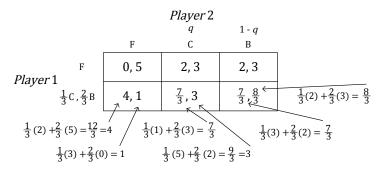
- Hence, such msNE would not assign any positive weight to strategies that are strictly dominated.
 - Some textbooks refer to this result by saying that "the support of the msNE is positive only for strategies that are not strictly dominated."

4. **Tennis game** (No psNE, but how do we operate with 3 strategies?):

		<i>Player</i> 2 <i>q</i> 1 - <i>q</i>		
		F	C	В
	F	0, <u>5</u>	2, 3	2, 3
Player 1 p	С	2, 3	1, <u>5</u>	<u>3</u> , 2
1 - <i>p</i>	В	<u>5</u> , 0	<u>3</u> , 2	2, <u>3</u>

- Remember this game? We used it as an example of how to delete an strategy that was strictly dominated by the combination of two strategies of that player.
 - Let's do it again.

• F is strictly dominated for Player 1:



• We can hence rule out F from Player 1 because it is strictly dominated by $(\frac{1}{3}C, \frac{2}{3}B)$.

 After deleting F from Player 1's available actions, we are left with:

	<i>Player</i> 2		
	F	С	В
C Dlaver 1	2, 3	1,5	3, 2
B B	5, 0	3,2	2, 3
C Player 1 B			

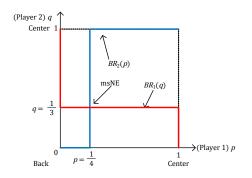
• Where we can rule out *F* from Player 2 because of being strictly dominated by *C*.

 Once strategy F has been deleted for both players, we are left with:

- But we cannot identify any psNE, Let's check for msNE:
- If the first player is using a mixed strategy, it must be that he indifferent between C and B:

• Similarly, if player 2 is using a mixed strategy, it must be that she is indifferent between C and B:

• (See figure on next slide)



- **Player 1:** If $q > \frac{1}{3}$, then Player 1 prefers Back (p = 0); otherwise Center.
- **Player 2:** If $p > \frac{1}{4}$, then Player 2 prefers Center (q = 1); otherwise Back.

- Best Responses in the Tennis Game
 - Player 1

$$extit{BR}_1(q) = \left\{egin{array}{l} extrm{Back if } q > rac{1}{4} \ extrm{{Center, Back} if } q = rac{1}{4} \ extrm{{Center if } } q < rac{1}{4} \end{array}
ight.$$

- (Recall that p = 0 implies playing strategy back with probability one).
- Player 2

$$\mathit{BR}_2(p) = \left\{ egin{array}{l} \mathsf{Center} \ \mathsf{if} \ p > rac{1}{4} \ \mathsf{\{Center, Back\}} \ \mathsf{if} \ p = rac{1}{4} \ \mathsf{Back} \ \mathsf{if} \ p < rac{1}{4} \end{array}
ight.$$

Graphical representation of BRFs and msNE:

- Matching pennies (Done ✓)
- ② Battle of the sexes (coordination) (Done √)
- Additional practice:
 - Lobbying game (Watson page 124).
 - 2 Chicken game (anticoordination).

A few tricks we just learned...

- Indifference: If it is optimal to randomize over a collection of pure strategies, then a player receives the same expected payoff from each of those pure strategies.
 - He must be indifferent between those pure strategies over which he randomizes.
- Odd number: In almost all finite games (games with a finite set of players and available actions), there is a finite and odd number of equilibria.
 - Examples: 1 NE in matching pennies (only one msNE), 3 NE in BoS (two psNE, one msNE), 1 in PD (only one psNE), etc.
- Never use strictly dominated strategies: If a pure strategy does not survive the IDSDS, then a NE assigns a zero probability to that pure strategy.
 - Example: PD game, where NC is strictly dominated, it does not receive any positive probability.

• Consider the rock-paper-scissors game

	<i>Player</i> 2		
	Rock	Paper	Scissors
Rock	0, 0	-1, <u>1</u>	<u>1</u> , -1
<i>Player</i> 1 Paper	<u>1,</u> -1	0, 0	-1, <u>1</u>
Scissors	-1, <u>1</u>	<u>1</u> , -1	0, 0

• First, note that neither player selects a pure strategy (with 100% probability).

 Second, every player must be mixing between all his three possible actions, R, P and S.

		<i>Player</i> 2		
remi d l		Rock	Paper	Scissors
If Player 1 only mixes between Rock and Paper	Rock	0, 0	-1, 1	1, -1
<i>Player</i> 1	Paper	1, -1	0, 0	-1, 1
:	Scissors	-1, 1	1, -1	0, 0

- Otherwise: if P1 mixes only between Rock and Paper, then Player 2 prefers to respond with Paper rather than Rock.
- But if Player 2 never uses Rock, then Player 1 gets a higher payoff with Scissors than Paper. Contradicton!
- Then players cannot be mixing between only two of their available strategies.

• Are you suspecting that the msNE is $\sigma = (\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$? You're right!

	<i>Player</i> 2		
	Rock Paper Scissors		
Rock	0, 0	-1, 1	1, -1
<i>Player</i> 1 Paper	1, -1	0, 0	-1, 1
Scissors	-1, 1	1, -1	0, 0

- We must make every player indifferent between using Rock, Paper, or Scissors.
- That is, $u_1(Rock, \sigma_2) = u_1(Paper, \sigma_2) = u_1(Scissors, \sigma_2)$ for Player 1, and
- $u_2(\sigma_1, Rock) = u_2(\sigma_1, Paper) = u_2(\sigma_1, Scissors)$ for Player 2.

- Let's separately find each of these expected utilities.
- If player 1 chooses Rock (first row), he obtains

$$u_1(Rock, \sigma_2) = 0\sigma_2(R) + (-1)\sigma_2(P) + 1(1 - \sigma_2(R) - \sigma_2(P))$$

= $-1\sigma_2(P) + 1 - \sigma_2(R) - \sigma_2(P)$

Player 2

First Row		$\sigma_2(R)$ Rock	σ ₂ (<i>P</i>) Paper	$1 - \sigma_2(R) - \sigma_2(P)$ Scissors
	Rock	0, 0	-1, 1	1, -1
<i>Player</i> 1	Paper	1, -1	0, 0	-1, 1
	Scissors	-1, 1	1, -1	0, 0

• If player 1 chooses Paper (second row), he obtains

$$\begin{array}{lcl} u_1(\textit{Paper},\sigma_2) & = & 1\sigma_2(R) + 0\sigma_2(P) + (-1)(1-\sigma_2(R) - \sigma_2(P)) \\ & = & \sigma_2(R) - 1 + \sigma_2(R) + \sigma_2(P) \end{array}$$

Player 2 $\sigma_2(R)$ $\sigma_2(P)$ $1 - \sigma_2(R) - \sigma_2(P)$ Rock Paper Scissors 0, 0-1, 11, -1Rock Second Row Plaver 1 1, -1 0, 0-1, 1 Paper -1, 11, -1 Scissors 0.0

• If player 1 chooses Scissors (third row), he obtains

$$u_1(Scissors, \sigma_2) = (-1)\sigma_2(R) + 1\sigma_2(P) + 0(1 - \sigma_2(R) - \sigma_2(P))$$

= $-\sigma_2(R) + \sigma_2(P)$

		<i>Player</i> 2		
		σ ₂ (R) Rock	$\sigma_2(P)$ Paper	$1 - \sigma_2(R) - \sigma_2(P)$ Scissors
	Rock	0, 0	-1, 1	1, -1
<i>Player</i> 1	Paper	1, -1	0, 0	-1, 1
Third Row	Scissors	-1, 1	1, -1	0, 0

Making the three expected utilities

$$\begin{array}{lcl} \textit{u}_1(\textit{Rock},\sigma_2) & = & -1\sigma_2(\textit{P}) + 1 - \sigma_2(\textit{R}) - \sigma_2(\textit{P}), \\ \textit{u}_1(\textit{Paper},\sigma_2) & = & \sigma_2(\textit{R}) - 1 + \sigma_2(\textit{R}) + \sigma_2(\textit{P}), \text{ and} \\ \textit{u}_1(\textit{Scissors},\sigma_2) & = & -\sigma_2(\textit{R}) + \sigma_2(\textit{P}) \end{array}$$

equal to each other, we obtain

$$\sigma_2(R) = \sigma_2(P) = 1 - \sigma_2(R) - \sigma_2(P)$$

 Hence, player 2 assigns the same probability weights to his three available actions, thus implying

$$\sigma_2^* = \left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$$

 A similar argument is applicable to player 1, since players' payoffs are symmetric.

