From Bayesian Nash Equilibrium (BNE) to Perfect Bayesian Equilibrium (PBE)

Félix Muñoz-García School of Economic Sciences Washington State University

BNEs and Sequential rationality

- So far we have learned how to find BNEs in incomplete information games.
 - We are doing great!
- In settings where players are uncertain about their opponent's types. . .
 - this is a fantastic solution concept.
 - since it specifies optimal strategies, given the information every player has access to.

BNEs and Sequential rationality

- What if player interact in a sequential-move game?
 - Can the BNE prescribe "insensible" behavior? Yes!
 - But, what do we mean by "insensible" behavior?
 - Strategies that are not sequentially rational.
 - We will, hence, need a solution concept that guarantees sequential rationality (as SPNE, but applied to contexts of incomplete information).
- Let's show this with an example.
- Use now the separate handout:
 - "Why do we need Perfect Bayesian Equilibrium? Asking for sequential rationality in sequential-move games with incomplete information."

More examples about how to find PBEs

- After finding the PBEs in the Gift game...
- Let's now practice with another example (*Monetary Authority game*):
 - Now we will consider a Strong or Weak monetary authority, who makes an inflation announcement.
 - And a labor union (uninformed about the monetary authority's true commitment with low inflation policies, either Strong or Weak)...
 - decides whether to demand large or moderate salary increases.

Monetary authority game

- **Example:** Let us consider the following sequential game with incomplete information:
 - A monetary authority (such as the Federal Reserve Bank) privately observes its real degree of commitment with maintaining low inflation levels.
 - After knowing its type (either Strong or Weak), the monetary authority decides whether to announce that the expectation for inflation is either High or Low.
 - A labor union, observing the message sent by the monetary authority, decides whether to ask for high or low salary raises (denoted as H or L, respectively)

Monetary authority game

 The game tree that represents this incomplete information game is, hence, as follows:

PBEs-Monetary Authority

- Before starting to find all possible PBEs...
 - Let us briefly set up our "road map"
- That is, let's recall the 5-step procedure that we need to follow in order to find PBEs.

Procedure to find PBEs

- 1. Specify a strategy profile for the privately informed player, either separating or pooling.
 - In our above example, there are only four possible strategy profiles for the privately informed monetary authority: two separating strategy profiles, $High^SLow^W$ and Low^SHigh^W , and two pooling strategy profiles, $High^SHigh^W$ and Low^SLow^W .
 - (For future reference, it might be helpful to shade the branches corresponding to the strategy profile we test.)
- 2. Update the uninformed player's beliefs using Bayes' rule, whenever possible.
 - In our above example, we need to specify beliefs μ and γ , which arise after the labor union observes a high or a low inflation announcement, respectively.

- 3. Given the uninformed player's updated beliefs, find his optimal response.
 - In our above example, we first determine the optimal response of the labor union (H or L) upon observing a high-inflation announcement (given its updated belief μ),
 - we then determine its optimal response (H or L) after observing a low-inflation announcement (given its updated belief γ).
 - (Also for future reference, it might be helpful to shade the branches corresponding to the optimal responses we just found.)

- 4. Given the optimal response of the uninformed player, find the optimal action (message) for the informed player.
 - In our previous example, we first check if the Strong monetary authority prefers to make a high or low inflation announcement (given the labor union's responses determined in step 3).
 - We then operate similarly for the Weak type of monetary authority.

- 5. Then check if this strategy profile for the informed player coincides with the profile suggested in step 1.
 - If it coincides, then this strategy profile, updated beliefs and optimal responses can be supported as a PBE of the incomplete information game.
 - Otherwise, we say that this strategy profile **cannot** be sustained as a PBE of the game.

- Let us next separately apply this procedure to test each of the four candidate strategy profiles:
 - two separating strategy profiles:
 - High^S Low^W, and
 Low^S High^W.
 - And two pooling strategy profiles:
 - High^S High^W, and
 Low^S Low^W.

• Let us first check separating strategy profile: Low^S High^W.

- **Step #1:** Specifying strategy profile $Low^S High^W$ that we will test.
 - (See shaded branches in the figure.)

- Step #2: Updating beliefs
 - (a) After high inflation announcement (left-hand side)

$$\mu = \frac{0.6\alpha^{Strong}}{0.6\alpha^{Strong} + 0.4\alpha^{Weak}} = \frac{0.6 \times 0}{0.6 \times 0 + 0.4 \times 1} = 0$$

- Step #2: Updating beliefs
 - This implies that after high inflation...
 - the labor union restricts its belief to the lower left-hand corner (see box), since $\mu=0$ and $1-\mu=1$

- Step #2: Updating beliefs
 - (b) After low inflation announcement (right-hand side)

$$\gamma = \frac{0.6 \left(1 - \alpha^{Strong}\right)}{0.6 \left(1 - \alpha^{Strong}\right) + 0.4 \left(1 - \alpha^{Weak}\right)} = \frac{0.6 \times 1}{0.6 \times 1 + 0.4 \times 0} = 1$$

• Step #2: Updating beliefs

- This implies that, after low inflation...
- the labor union restricts its belief to the upper right-hand corner (see box), since $\gamma=1$ and $1-\gamma=0$.

- Step #3: Optimal response
 - (a) After high inflation announcement, respond with H since

$$0 > -100$$

in the lower left-hand corner of the figure (see blue box).

- Step #3: Optimal response
 - (b) After low inflation announcement, respond with L since

$$0 > -100$$

in the upper right-hand corner of the figure (see box).

- We can hence summarize the optimal responses we just found, by shading them in the figure:
 - H after high inflation, but L after low inflation.

- Step #4: Optimal messages by the informed player
 - (a) When the monetary authority is Strong, if it chooses Low (as prescribed), its payoff is \$300,
 - while if it deviates, its payoff decreases to \$0.
 - (No incentives to deviate).

• Step #4: Optimal messages

- (b) When the monetary authority is Weak, if it chooses High (as prescribed), its payoff is \$100,
- while if it deviates, its payoff decreases to \$50.
- (No incentives to deviate either).

- Since no type of privately informed player (monetary authority) has incentives to deviate,
 - The separating strategy profile $Low^S High^W$ can be sustained as a PBE.

• Let us now check the opposite separating strategy profile: $High^{S}Low^{W}$.

- **Step #1:** Specifying strategy profile $High^S Low^W$ that we will test.
 - (See shaded branches in the figure.)

- Step #2: Updating beliefs
 - (a) After high inflation announcement

$$\mu = \frac{0.6\alpha^{Strong}}{0.6\alpha^{Strong} + 0.4\alpha^{Weak}} = \frac{0.6 \times 1}{0.6 \times 1 + 0.4 \times 0} = 1$$

- Step #2: Updating beliefs
 - Hence, after high inflation...
 - the labor union restricts its beliefs to $\mu=1$ in the upper left-hand corner (see box).

- Step #2: Updating beliefs
 - (b) After low inflation announcement

$$\gamma = \frac{0.6 \left(1 - \alpha^{Strong}\right)}{0.6 \left(1 - \alpha^{Strong}\right) + 0.4 \left(1 - \alpha^{Weak}\right)} = \frac{0.6 \times 0}{0.6 \times 0 + 0.4 \times 1} = 0$$

- Step #2: Updating beliefs
 - Hence, after low inflation...
 - the labor union restricts its beliefs to $\gamma=0$ (i.e., $1-\gamma=1$) in the lower right-hand corner (see box).

- Step #3: Optimal response
 - (a) After high inflation announcement, respond with L since

$$0 > -100$$

in the upper left-hand corner of the figure (see box).

- Step #3: Optimal response
 - (a) After low inflation announcement, respond with H since

$$0 > -100$$

in the lower right-hand corner of the figure (see box).

- Summarizing the optimal responses we just found:
 - L after high inflation, but H after high inflation.

- Step #4: Optimal messages of the informed player
 - (a) When the monetary authority is Strong, if it chooses High (as prescribed), its payoff is \$200,
 - while if it deviates, its payoff decreases to \$100.
 - (No incentives to deviate).

• Step #4: Optimal messages

- (b) When the monetary authority is Weak, if it chooses Low (as prescribed), its payoff is \$0,
- while if it deviates, its payoff increases to \$150.
- (Incentives to deviate!!).

- Since we found one type of privately informed player (the Weak monetary authority) who has incentives to deviate...
 - The separating strategy profile $High^SLow^W$ cannot be sustained as a PBE.

Pooling equilibrium with (High, High)

• Let us now test the pooling strategy profile $High^S High^W$.

- **Step #1:** Specifying strategy profile $High^S High^W$ that we will test.
 - (See shaded branches in the figure.)

Pooling equilibrium with (High, High)

- Step #2: Updating beliefs
 - (a) After high inflation announcement

$$\mu = \frac{0.6\alpha^{Strong}}{0.6\alpha^{Strong} + 0.4\alpha^{Weak}} = \frac{0.6 \times 1}{0.6 \times 1 + 0.4 \times 1} = 0.6$$

so the high inflation announcement is uninformative.

- Step #2: Updating beliefs
 - (b) After low inflation announcement (off-the-equilibrium path)

$$\gamma = \frac{0.6\left(1 - \alpha^{Strong}\right)}{0.6\left(1 - \alpha^{Strong}\right) + 0.4\left(1 - \alpha^{Weak}\right)} = \frac{0.6 \times 0}{0.6 \times 0 + 0.4 \times 0} = \frac{0}{0}$$

hence, $\gamma \in [0,1]$.

- Step #3: Optimal response
 - (a) After high inflation announcement (along the equil. path), respond with L since

$$EU_{Labor}(H|High) = 0.6 \times (-100) + 0.4 \times 0 = -60$$

 $EU_{Labor}(L|High) = 0.6 \times 0 + 0.4 \times (-100) = -40$

• Step #3: Optimal response

• (a) After low inflation announcement (off-the-equil.),

$$EU_{Labor}\left(H|Low\right) = \gamma \times (-100) + (1-\gamma) \times 0 = -100\gamma$$

$$EU_{Labor}\left(L|Low\right) = \gamma \times 0 + (1-\gamma) \times (-100) = -100 + 100\gamma$$

i.e., respond with H if $\gamma < \frac{1}{2}$.

- Summarizing the optimal responses we found...
 - Note that we need to divide our analysis into two cases:
 - Case 1, where $\gamma < \frac{1}{2}$, implying that the labor union responds with H after observing low inflation (right-hand side).

- and...
 - Case 2, where $\gamma \geq \frac{1}{2}$, implying that the labor union responds with L after observing low inflation (right-hand side).

Case 1, where $\gamma < \frac{1}{2}$

- (a) When the monetary authority is Strong, if it chooses High (as prescribed), its payoff is \$200,
- while if it deviates, its payoff decreases to \$100.
- (No incentives to deviate).

Case 1, where $\gamma < \frac{1}{2}$

- (b) When the monetary authority is Weak, if it chooses High (as prescribed), its payoff is \$150,
- while if it deviates, its payoff drops to \$0.
- (No incentives to deviate either).

Case 1, where $\gamma < \frac{1}{2}$

- No type of monetary authority has incentives to deviate.
- Hence, the pooling strategy profile $High^S High^W$ can be sustained as a PBE when off-the-equilibrium beliefs satisfy $\gamma < \frac{1}{2}$.

Case 2, where $\gamma \geq \frac{1}{2}$

- (a) When the monetary authority is Strong, if it chooses High (as prescribed), its payoff is \$200,
- while if it deviates, its payoff **increases** to \$300.
- (Incentives to deviate!!).

Case 2, where $\gamma \geq \frac{1}{2}$

- (b) When the monetary authority is Weak, if it chooses High (as prescribed), its payoff is \$150,
- while if it deviates, its payoff drops to \$50.
- (No incentives to deviate).

Case 2, where $\gamma \geq \frac{1}{2}$

- Since we found one type of privately informed player (the Strong monetary authority) who has incentives to deviate...
 - The pooling strategy profile $High^S High^W$ cannot be sustained as a PBE when off-the-equilibrium beliefs satisfy $\gamma \ge \frac{1}{2}$

• Let us now examine the opposite pooling strategy profile.

- **Step #1:** Specifying strategy profile $Low^S Low^W$ that we will test.
 - (See shaded branches in the figure.)

- Step #2: Updating beliefs
 - (a) After a low inflation announcement

$$\gamma = \frac{0.6 \left(1 - \alpha^{Strong}\right)}{0.6 \left(1 - \alpha^{Strong}\right) + 0.4 \left(1 - \alpha^{Weak}\right)} = \frac{0.6 \times 1}{0.6 \times 1 + 0.4 \times 1} = 0.6$$

so posterior and prior beliefs coincide.

- Step #2: Updating beliefs
 - (b) After a high inflation announcement (off-the-equil. path)

$$\mu = \frac{0.6\alpha^{Strong}}{0.6\alpha^{Strong} + 0.4\alpha^{Weak}} = \frac{0.6 \times 0}{0.6 \times 0 + 0.4 \times 0} = \frac{0}{0}$$

hence, $\mu \in [0, 1]$.

- Step #3: Optimal response
 - (a) After a low inflation announcement (along the equilibrium path), respond with L since

$$EU_{Labor}(H|Low) = 0.6 \times (-100) + 0.4 \times 0 = -60$$

 $EU_{Labor}(L|Low) = 0.6 \times 0 + 0.4 \times (-100) = -40$

- Step #3: Optimal response
 - (a) After a high inflation announcement (off-the-equil.),

$$\begin{array}{lcl} \textit{EU}_{\textit{Labor}}\left(\textit{H}|\textit{Low}\right) & = & \mu \times (-100) + (1-\mu) \times 0 = -100 \mu \\ \textit{EU}_{\textit{Labor}}\left(\textit{L}|\textit{Low}\right) & = & \mu \times 0 + (1-\mu) \times (-100) = -100 + 100 \mu \end{array}$$

i.e., respond with H if $\mu < \frac{1}{2}$.

- Summarizing the optimal responses we found...
 - Note that we need to divide our analysis into two cases:
 - Case 1, where $\mu < \frac{1}{2}$, implying that the labor union responds with H after observing high inflation (left-hand side).

- and...
 - Case 2, where $\mu \ge \frac{1}{2}$, implying that the labor union responds with L after observing high inflation (left-hand side).

Case 1, where $\mu < \frac{1}{2}$

- (a) When the monetary authority is Strong, if it chooses Low (as prescribed), its payoff is \$300,
- while if it deviates, its payoff decreases to \$200.
- (No incentives to deviate).

Case 1, where $\mu < \frac{1}{2}$

- (b) When the monetary authority is Weak, if it chooses High (as prescribed), its payoff is \$50,
- while if it deviates, its payoff increases to \$100.
- (Incentives to deviate!!).

Case 1, where $\mu < \frac{1}{2}$

- Since we found one type of privately informed player (the Weak monetary authority) who has incentives to deviate...
 - The pooling strategy profile $Low^S Low^W$ cannot be sustained as a PBE when off-the-equilibrium beliefs satisfy $\mu < \frac{1}{2}$

Case 2, where $\mu \geq \frac{1}{2}$

- (a) When the monetary authority is Strong, if it chooses Low (as prescribed), its payoff is \$300,
- while if it deviates, its payoff decreases to \$200.
- (No incentives to deviate).

Case 2, where $\mu \geq \frac{1}{2}$

- (b) When the monetary authority is Weak, if it chooses Low (as prescribed), its payoff is \$50,
- while if it deviates, its payoff increases to \$150.
- (Incentives to deviate!!).

Case 2, where $\mu \geq \frac{1}{2}$

- Since we found one type of privately informed player (the Weak monetary authority) who has incentives to deviate...
 - The pooling strategy profile $Low^S Low^W$ cannot be sustained as a PBE when off-the-equilibrium beliefs satisfy $\mu \ge \frac{1}{2}$.
- Hence, the pooling strategy profile $Low^S Low^W$ cannot be sustained as a PBE for any off-the-equilibrium beliefs μ_{e}

