A Systematic Presentation of Equilibrium Bidding Strategies to Undergradudate Students

Felix Munoz-Garcia School of Economic Sciences Washington State University

April 8, 2014

Introduction

- Auctions are a large part of the economic landscape:
 - Since Babylon in 500 BC, and Rome in 193 AC
 - Auction houses Shotheby's and Christie's founded in 1744 and 1766.

Munch's "The Scream," sold for US\$119.9 million in 2012

Introduction

- Auctions are a large part of the economic landscape:
 - More recently:
 - eBay: \$11 billion in revenue, 27,000 employees.

• Entry of more firms in this industry: QuiBids.com.

Introduction

- Also used by governments to sell:
 - Treasury bonds,
 - Air waves (3G technology):
 - British economists called the sale of the British 3G telecom licences "The Biggest Auction Ever" (\$36 billion)
 - Several game theorists played an important role in designing the auction.

Overview

- Auctions as allocation mechanisms:
 - types of auctions, common ingredients, etc.
- First-price auction.
 - Optimal bidding function.
 - How is it affected by the introduction of more players?
 - How is it affected by risk aversion?
- Second-price auction.
- Efficiency.
- Common-value auctions.
 - The winner's curse.

Auctions

- N bidders, each bidder i with a valuation v_i for the object.
- One seller.
- We can design many different rules for the auction:
 - First price auction: the winner is the bidder submitting the highest bid, and he/she must pay the highest bid (which is his/hers).
 - **Second price auction:** the winner is the bidder submitting the highest bid, but he/she must pay the *second highest* bid.
 - **Third price auction:** the winner is the bidder submitting the highest bid, but he/she must pay the *third highest* bid.
 - All-pay auction: the winner is the bidder submitting the highest bid, but every single bidder must pay the price he/she submitted.

Auctions

- All auctions can be interpreted as allocation mechanisms with the following ingredients:
 - **1** an allocation rule (who gets the object):
 - The allocation rule for most auctions determines the object is allocated to the individual submitting the highest bid.
 - Mowever, we could assign the object by a lottery, where $prob(win) = \frac{b_1}{b_1 + b_2 + ... + b_N}$ as in "Chinese auctions".
 - a payment rule (how much every bidder must pay):
 - The payment rule in the FPA determines that the individual submitting the highest bid pays his bid, while everybody else pays zero.
 - The payment rule in the SPA determines that the individual submitting the highest bid pays the second highest bid, while everybody else pays zero.
 - The payment rule in the APA determines that every individual must pay the bid he/she submitted.

- I know my own valuation for the object, v_i .
- I don't know your valuation for the object, v_j , but I know that it is drawn from a distribution function.
 - Easiest case:

$$v_j = \left\{ egin{array}{ll} 10 ext{ with probability 0.4, or} \\ 5 ext{ with probability 0.6} \end{array}
ight.$$

More generally,

$$F(v) = prob(v_j < v)$$

We will assume that every bidder's valuation for the object is drawn from a uniform distribution function between 0 and 1.

• Uniform distribution function U[0, 1]

- If bidder i's valuation is v, then all points in the horizontal axis where $v_i < v$, entail...
- Probability $prob(v_i < v) = F(v)$ in the vertical axis.
 - In the case of a uniform distribution entails F(v)=v.

• Uniform distribution function U[0,1]

- Similarly, valuations where $v_i > v$ (horizontal axis) entail:
- Probability $prob(v_i > v) = 1 F(v)$ in the vertical axis.
 - Under a uniform distribution, implies 1 F(v) = 1 v.

- Since all bidders are ex-ante symmetric...
- They will all be using the same bidding function:

$$b_i:[0,1] o \mathbb{R}_+$$
 for every bidder i

• They might, however, submit different bids, depending on their privately observed valuation.

• Example:

- **1** A valuation of $v_i = 0.4$ inserted into a bidding function $b_i(v_i) = \frac{v_i}{2}$, yields a bid of $b_i(0.4) = \$0.2$.
- ② A bidder with a higher valuation of $v_i = 0.9$ yields, in contrast, a bid of $b_i(0.9) = \frac{0.9}{2} = \0.45 .
- **3** Even if bidders are *symmetric* in the bidding function they use, they can be *asymmetric* in the actual bid they submit.

 Let us analyze equillibrium bidding strategies in First-price auctions.

- Let us start by ruling out bidding strategies that yield negative (or zero) payoffs, regardless of what your opponent does,
 - i.e., deleting dominated bidding strategies.
- Never bid above your value, b_i > v_i, since it yields a negative payoff if winning.

$$EU_i(b_i|v_i) = prob(win) \cdot \underbrace{(v_i - b_i)}_{} + prob(lose) \cdot 0 < 0$$

• Never bid **your own value**, $b_i = v_i$, since it yields a zero payoff if winning.

$$EU_i(b_i|v_i) = prob(win) \cdot \underbrace{(v_i - b_i)}_{0} + prob(lose) \cdot 0 = 0$$

- Therefore, the only bidding strategies that can arise in equilibrium imply "bid shading,"
 - That is, bidding below your valuation, $b_i < v_i$.
 - More specifically, $b_i(v_i) = a \cdot v_i$, where $a \in (0, 1)$.

- But, what is the precise value of parameter $a \in (0, 1)$.
 - That is, how much bid shadding should we practice?
- Before answering that question...
 - we must provide a more specific expression for the probability of winning if bidder i submits a bid x,

$$EU_i(x|v_i) = \underbrace{prob(win)}_{\text{still to be determined}} \cdot (v_i - x)$$

- Given symmetry in the bidding function, bidder *j* can "recover" the valuation that produces a bid *x*.
 - Moving from the vertical to the horizontal axis,
 - That is, solving for v_i in function $x = a \cdot v_i$, yields $v_i = \frac{x}{a}$

- What is, then, the probability of winning if bidder i submits a bid x.
 - $prob(b_i > b_i)$ depicted in the vertical axis, or
 - $prob(\frac{x}{2} > v_i)$ depicted in the horizontal axis.

- And since valuations are uniformly distributed...
 - $prob(\frac{x}{a} > v_j) = \frac{x}{a}$
 - which implies that the expected utility of submitting a bid x is...

$$EU_i(x|v_i) = \underbrace{\frac{x}{a}}_{prob(win)} (v_i - x)$$

• And simplifying...

$$=\frac{xv_i-x^2}{a}$$

• Taking first-order conditions of $\frac{xv_i-x^2}{a}$ with respect to x, we obtain

$$\frac{v_i-2x}{a}=0$$

and solving for x yields an optimal bidding function of

$$x(v_i) = \frac{1}{2}v_i.$$

Optimal bidding function in FPA

• Let's depict the optimal bidding function we found for the FPA, $x(v_i) = \frac{1}{2}v_i$.

- Bid shadding in half:
 - For instance, when $v_i=0.75$, his optimal bid is $\frac{1}{2}0.75=0.375$.

FPA with N bidders

- Let us generalize our findings from N=2 to N>2 bidders.
- The expected utility is similar, but the probability of winning differs...

$$prob(win) = \frac{x}{a} \cdot \dots \cdot \frac{x}{a} \cdot \frac{x}{a} \cdot \dots \cdot \frac{x}{a}$$
$$= \left(\frac{x}{a}\right)^{N-1}$$

• Hence, the expected utility of submitting a bid x is...

$$EU_i(x|v_i) = \underbrace{\left(\frac{x}{a}\right)^{N-1}}_{prob(win)}(v_i - x)$$

FPA with N bidders

 Taking first-order conditions with respect to his bid, x, we obtain

$$-\left(\frac{x}{a}\right)^{N-1}+\left(\frac{x}{a}\right)^{N-2}\left(\frac{1}{a}\right)(v_i-x)=0$$

Rearranging,

$$\left(\frac{x}{a}\right)^N \frac{a}{x^2} \left[(N-1)v_i - nx \right] = 0,$$

• And solving for x, we find bidder i's optimal bidding function,

$$x(v_i) = \frac{N-1}{N}v_i$$

FPA with N bidders

 Let's depict the optimal bidding function in the FPA with N bidders $x(v_i) = \frac{N-1}{N}v_i$

Comparative statics:

- Bid shadding diminishes as N increases.
- That is, the bidding function approaches 45^0 —line.

- Utility function is concave in income, x, e.g., $u(x) = x^{\alpha}$,
 - ullet where $0<lpha\leq 1$ denotes bidder i's risk-aversion parameter.
 - Example: $u(x) = x^{1/2} = \sqrt{x}$
 - [Note that when $\alpha = 1$, the bidder is risk neutral.]
- \bullet Hence, the expected utility of submitting a bid x is

$$EU_i(x|v_i) = \underbrace{\frac{x}{a}}_{prob(win)} (v_i - x)^{\alpha}$$

• Note that the only element that changed is that now the payoff if winning, $v_i - x$, yields a utility $(v_i - x)^{\alpha}$ rather than $v_i - x$ under risk neutrality.

• Taking first-order conditions with respect to his bid, x,

$$\frac{1}{a}(v_i-x)^{\alpha}-\frac{x}{a}\alpha(v_i-x)^{\alpha-1}=0,$$

and solving for x, we find the optimal bidding function,

$$x(v_i) = \frac{v_i}{1+\alpha}.$$

- Under risk-neutral bidders, $\alpha=1$, this function becomes $x(v_i)=\frac{v_i}{2}$, thus coinciding with what we found a few slides ago.
- But, what happens when α decreases (more risk aversion)?(Next slide)

• **Comparative statistics** of optimal bidding function $x(v_i) = \frac{v_i}{1+\alpha}$.

- Bid shading is ameliorated as bidders' risk aversion increases:
 - That is, the bidding function approaches the 45^{0} line when α approaches zero.

- Intuition: for a risk-averse bidder:
 - the **positive effect** of slightly lowering his bid, arising from getting the object at a cheaper price, is offset by...
 - the negative effect of increasing the probability that he loses the auction.
- Ultimately, the bidder's incentives to shade his bid are diminished.

• Let's now move to second-price auctions.

- Bidding your own valuation, $b_i(v_i) = v_i$, is a weakly dominant strategy,
 - i.e., it yields a larger (or the same) payoff than submitting any other bid.
- In order to show this, let us find the expected payoff from submitting...
 - A bid that coincides with your own valuation, $b_i(v_i) = v_i$,
 - A bid that lies below your own valuation, $b_i(v_i) < v_i$, and
 - A bid that lies above your own valuation, $b_i(v_i) > v_i$.
- We can then compare which bidding strategy yields the largest expected payoff.

• Bidding your own valuation, $b_i(v_i) = v_i...$

- Case 1a: If his bid lies below the highest competing bid, i.e., $b_i < h_i$ where $h_i = \max_{i \neq i} \{b_j\}$,
 - then bidder i loses the auction, obtaining a zero payoff.

• Bidding your own valuation, $b_i(v_i) = v_i...$

- Case 1b: If his bid lies above the highest competing bid, i.e., $b_i > h_i$, then bidder i wins, paying a price of h_i .
 - He obtains a net payoff of $v_i h_i$.

• Bidding your own valuation, $b_i(v_i) = v_i...$

- Case 1c: If, instead, his bid coincides with the highest competing bid, i.e., $b_i = h_i$, then a tie occurs.
 - For simplicity, ties are solved by randomly assigning the object to the bidders who submitted the highest bids.
 - As a consequence, bidder *i*'s expected payoff becomes $\frac{1}{2}(v_i h_i)$.

• Bidding below your valuation, $b_i(v_i) < v_i$...

- Case 2a: If his bid lies below the highest competing bid, i.e., $b_i < h_i$,
 - then bidder i loses, obtaining a zero payoff.

• Bidding below your valuation, $b_i(v_i) < v_i$...

- Case 2b: if his bid lies above the highest competing bid, i.e., $b_i > h_i$,
 - then bidder i wins, obtaining a net payoff of $v_i h_i$.

• Bidding below your valuation, $b_i(v_i) < v_i$...

- Case 2c: If, instead, his bid coincides with the highest competing bid, i.e., $b_i = h_i$, then a tie occurs,
 - and the object is randomly assigned, yielding an expected payoff of $\frac{1}{2}(v_i h_i)$.

- Up to this point, we have shown that bidding below your valuation, $b(v_i) < v_i$, yields the same utility level as bidding your own valuation, $b(v_i) = v_i$, or a lower payoff.
- Let us now examine whether this bidder can improve his payoff by bidding above his valuation, $b(v_i) > v_i$.

• Bidding above your valuation, $b_i(v_i) > v_i$...

- Case 3a: if his bid lies below the highest competing bid, i.e., $b_i < h_i$,
 - then bidder i loses, obtaining a zero payoff.

• Bidding above your valuation, $b_i(v_i) > v_i$...

- Case 3b: if his bid lies above the highest competing bid, i.e., $b_i > h_i$, then bidder i wins.
 - His payoff becomes $v_i h_i$, which is positive if $v_i > h_i$, or negative otherwise.

• Bidding above your valuation, $b_i(v_i) > v_i$...

- Case 3c: If, instead, his bid coincides with the highest competing bid, i.e., $b_i = h_i$, then a tie occurs.
 - The object is randomly assigned, yielding an expected payoff of $\frac{1}{2}(v_i-h_i)$, which is positive only if $v_i>h_i$.

Summary:

- Bidder i's payoff from submitting a bid above his valuation:
 - either coincides with his payoff from submitting his own value for the object, or
 - becomes strictly lower
 - thus nullifying his incentives to deviate from his equilibrium bid of b_i(v_i) = v_i.
- Hence, there is no bidding strategy that provides a strictly higher payoff than $b_i(v_i) = v_i$ in the SPA.
- All players bid their own valuation, without shading their bids,
 - unlike in the optimal bidding function in FPA.

Remark:

- The above equilibrium bidding strategy in the SPA is unaffected by:
 - \bullet the number of bidders who participate in the auction, N, or
 - their risk-aversion preferences.
- They would nonetheless affect:

•

- the chances of winning (which decreases as more bidders participate in the auction), and
- the payoff if winning (which decreases in the risk aversion parameter, α).

Efficiency in auctions

- We say that an auction (and generally any allocation mechanism) is efficient if:
 - The object is assigned to the bidder with the highest valuation.
- Otherwise, the outcome of the auction cannot be efficient...
 - since there exist alternative reassignments that would still improve welfare.
 - FPA and SPA are, hence, efficient, since:
 - The player with the highest valuation submits the highest bid and wins the auction.
 - Lottery auctions are not necessarily efficient.

- In some auctions all bidders assign the same value to the object for sale.
 - Example: Oil lease
 - Same profits to be made from the oil reservoir.

- Firms, however, do not precisely observe the value of the object (profits to be made from the reservoir) before submitting their bids.
- Instead, they only observe an estimate of these potential profits:
 - from a consulting company, a bidder/firm's own estimates, etc.

- Consider the auction of an oil lease.
- The true value of the oil lease (in millions of dollars) is $v \in [10, 11, ..., 20]$
- Firm A hires a consultant, and gets a signal s

$$s = \begin{cases} v + 2 \text{ with prob } \frac{1}{2} \text{ (overestimate)} \\ v - 2 \text{ with prob } \frac{1}{2} \text{ (underestimate)} \end{cases}$$

That is, the probability that the true value of the oil lease is v, given that the firm receives a signal s, is

$$prob(v|s) = \left\{ egin{array}{l} rac{1}{2} \ {
m if} \ v = s - 2 \ {
m (overestimate)} \ rac{1}{2} \ {
m if} \ v = s + 2 \ {
m (underestimate)} \end{array}
ight.$$

 If firm A was not participating in an auction, then the expected value of the oil lease would be

$$\frac{1}{2}(s-2) + \frac{1}{2}(s+2) = \frac{s-2+s+2}{2} = \frac{2s}{2} = s$$
if overestimation if underestimation

• Hence, the firm would pay for the oil lease a price p < s, making a positive expected profit.

- What if the firm participates in a FPA for the oil lease against firm B?
- Every firm uses a different consultant...
 - but they don't know if their consultant systematically overestimates or underestimates the value of the oil lease.
- Every firm receives a signal s from its consultant,
 - observing its own signal, but not observing the signal the other firm receives, every firm submits a bid from {1, 2, ..., 20}.

- We want to show that bidding b = s 1 cannot be optimal for any firm.
- Notice that this bidding strategy seems sensible at first glance:
 - The firm is bidding less than its signal, b < s.
 - So, if the true value of the oil lease was s, the firm would get some positive expected profit from winning.
 - In addition, bidding is increasing in the signal that the firm receives, i.e., b = s 1 is increasing in s.
 - How come such a bidding strategy is not optimal? Let's show it.

- Let us assume that firm A receives a signal of s = 10.
 - Then it bids b = s 1 = 10 1 = \$9.
- Given such a signal, the true value of the oil lease is

$$v = \begin{cases} s+2 = 12 \text{ with prob } \frac{1}{2} \\ s-2 = 8 \text{ with prob } \frac{1}{2} \end{cases}$$

- In the first case (true value of 12)
 - ullet firm A receives a signal of $s_{\mathcal{A}}=10$ (underestimation), and
 - firm B receives a signal of $s_B = 14$ (overestimation).
- Then, firms bid $b_A = 10 1 = 9$, and $b_B = 14 1 = 13$, and firm A loses the auction.

- In the second case, when the true value of the oil lease is v = 8,
 - firm A receives a signal of $s_A = 10$ (overestimation), and
 - firm B receives a signal of $s_B = 6$ (underestimation).
- Then, firms bid $b_A = 10 1 = 9$, and $b_B = 6 1 = 5$, and firm A wins the auction.
 - However, the winner's expected profit becomes

$$\frac{1}{2}(8-9)+\frac{1}{2}0=-\frac{1}{2}$$

- Negative profits from winning.
- Winning is a curse!!

Winner's curse

- In auctions where all bidders assign the same valuation to the object (common value auctions),
 - and where every bidder receives an inexact signal of the object's true value...
- The fact that you won...
 - just means that you received an *overestimated* signal of the true value of the object for sale (oil lease).
- How to avoid the winner's curse?
 - Bid b = s 2 or less,
 - take into account the possibility that you might be receiving overestimated signals.

Winner's curse - Experiments I

- In the classroom: Your instructor shows up with a jar of nickels,
 - Every student can look at the jar for a few minutes (getting an imperfect signal of the jar's content).

Winner's curse - Experiments I

- Then the instructor requests each student to submit a bid in a piece of paper.
- The bids are then read aloud and ranked, and the winner is determined.
- A recurrent observation in these experiments is that the winner pays too much for the jar!

Winner's curse - Experiments II

- In the field: Texaco in auctions selling the mineral rights to off-shore properties owned by the US government.
 - All firms avoided the winner's curse (their average bids were about 1/3 of their signal)...
 - Expect for Texaco:
 - Not only their executives fall prey of the winner's curse,
 - They submitted bids above their own signal!
 - They needed some remedial auction theory!

Auction Theory -Additional Readings

- Vijay Krishna (2009). Auction Theory. Academic Press.
- Paul Milgrom (2004). Putting Auction Theory to work.
 Cambridge University Press.
- Paul Klemperer (2004). Auctions: Theory and Practice.
 Princeton University Press.