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Introduction

Auctions are a large part of the economic landscape:
Since Babylon in 500 BC, and Rome in 193 AC
Auction houses Shotheby�s and Christie�s founded in 1744 and
1766.

Munch�s �The Scream,� sold for US$119.9 million in 2012.



Introduction

Auctions are a large part of the economic landscape:

More recently:

eBay: $11 billion in revenue, 27,000 employees.

Entry of more �rms in this industry: QuiBids.com.



Introduction

Also used by governments to sell:
Treasury bonds,
Air waves (3G technology):

British economists called the sale of the British 3G
telecom licences "The Biggest Auction Ever" ($36 billion)
Several game theorists played an important role in
designing the auction.



Overview

Auctions as allocation mechanisms:

types of auctions, common ingredients, etc.

First-price auction.

Optimal bidding function.
How is it a¤ected by the introduction of more players?
How is it a¤ected by risk aversion?

Second-price auction.

E¢ ciency.

Common-value auctions.

The winner�s curse.



Auctions

N bidders, each bidder i with a valuation vi for the object.

One seller.

We can design many di¤erent rules for the auction:
1 First price auction: the winner is the bidder submitting the
highest bid, and he/she must pay the highest bid (which is
his/hers).

2 Second price auction: the winner is the bidder submitting the
highest bid, but he/she must pay the second highest bid.

3 Third price auction: the winner is the bidder submitting the
highest bid, but he/she must pay the third highest bid.

4 All-pay auction: the winner is the bidder submitting the
highest bid, but every single bidder must pay the price he/she
submitted.



Auctions

All auctions can be interpreted as allocation mechanisms with
the following ingredients:

1 an allocation rule (who gets the object):
1 The allocation rule for most auctions determines the
object is allocated to the individual submitting the
highest bid.

2 However, we could assign the object by a lottery, where
prob(win) = b1

b1+b2+...+bN
as in "Chinese auctions".

2 a payment rule (how much every bidder must pay):
1 The payment rule in the FPA determines that the
individual submitting the highest bid pays his bid, while
everybody else pays zero.

2 The payment rule in the SPA determines that the
individual submitting the highest bid pays the second
highest bid, while everybody else pays zero.

3 The payment rule in the APA determines that every
individual must pay the bid he/she submitted.



Private valuations

I know my own valuation for the object, vi .

I don�t know your valuation for the object, vj , but I know that
it is drawn from a distribution function.

1 Easiest case:

vj =
�
10 with probability 0.4, or
5 with probability 0.6

2 More generally,
F (v) = prob(vj < v)

3 We will assume that every bidder�s valuation for the object is
drawn from a uniform distribution function between 0 and 1.



Private valuations

Uniform distribution function U [0, 1]

If bidder i�s valuation is v , then all points in the horizontal axis
where vj < v , entail...
Probability prob(vj < v) = F (v) in the vertical axis.

In the case of a uniform distribution entails F (v) = v .



Private valuations

Uniform distribution function U [0, 1]

Similarly, valuations where vj > v (horizontal axis) entail:

Probability prob(vj > v) = 1� F (v) in the vertical axis.
Under a uniform distribution, implies 1� F (v) = 1� v .



Private valuations

Since all bidders are ex-ante symmetric...

They will all be using the same bidding function:

bi : [0, 1]! R+ for every bidder i

They might, however, submit di¤erent bids, depending on
their privately observed valuation.

Example:
1 A valuation of vi = 0.4 inserted into a bidding function
bi (vi ) =

vi
2 , yields a bid of bi (0.4) = $0.2.

2 A bidder with a higher valuation of vi = 0.9 yields, in contrast,
a bid of bi (0.9) =

0.9
2 = $0.45.

3 Even if bidders are symmetric in the bidding function they use,
they can be asymmetric in the actual bid they submit.



First-price auctions

Let us analyze equillibrium bidding strategies in First-price
auctions.



First-price auctions

Let us start by ruling out bidding strategies that yield negative
(or zero) payo¤s, regardless of what your opponent does,

i.e., deleting dominated bidding strategies.

Never bid above your value, bi > vi , since it yields a
negative payo¤ if winning.

EUi (bi jvi ) = prob(win) � (vi � bi )| {z }
�

+ prob(lose) � 0 < 0

Never bid your own value, bi = vi , since it yields a zero
payo¤ if winning.

EUi (bi jvi ) = prob(win) � (vi � bi )| {z }
0

+ prob(lose) � 0 = 0



First-price auctions

Therefore, the only bidding strategies that can arise in
equilibrium imply �bid shading,�

That is, bidding below your valuation, bi < vi .
More speci�cally, bi (vi ) = a � vi , where a 2 (0, 1).



First-price auctions

But, what is the precise value of parameter a 2 (0, 1).
That is, how much bid shadding should we practice?

Before answering that question...

we must provide a more speci�c expression for the probability
of winning if bidder i submits a bid x ,

EUi (x jvi ) = prob(win)| {z }
still to be determined

�(vi � x)



First-price auctions

Given symmetry in the bidding function, bidder j can
"recover" the valuation that produces a bid x .

Moving from the vertical to the horizontal axis,
That is, solving for vi in function x = a � vi , yields vi = x

a



First-price auctions

What is, then, the probability of winning if bidder i submits a
bid x .

prob(bi > bj ) depicted in the vertical axis, or
prob( xa > vj ) depicted in the horizontal axis.



First-price auctions

And since valuations are uniformly distributed...

prob( xa > vj ) =
x
a

which implies that the expected utility of submitting a bid x
is...

EUi (x jvi ) =
x
a|{z}

prob(win)

(vi � x)

And simplifying...

=
xvi � x2
a



First-price auctions

Taking �rst-order conditions of xvi�x
2

a with respect to x , we
obtain

vi � 2x
a

= 0

and solving for x yields an optimal bidding function of

x(vi ) =
1
2
vi .



Optimal bidding function in FPA

Let�s depict the optimal bidding function we found for the
FPA, x(vi ) = 1

2vi .

Bid shadding in half :
For instance, when vi = 0.75, his optimal bid is

1
20.75 = 0.375.



FPA with N bidders

Let us generalize our �ndings from N=2 to N>2 bidders.

The expected utility is similar, but the probability of winning
di¤ers...

prob(win) =
x
a
� ... � x

a
� x
a
� ... � x

a

=
�x
a

�N�1
Hence, the expected utility of submitting a bid x is...

EUi (x jvi ) =
�x
a

�N�1
| {z }(vi � x)
prob(win)



FPA with N bidders

Taking �rst-order conditions with respect to his bid, x , we
obtain

�
�x
a

�N�1
+
�x
a

�N�2 �1
a

�
(vi � x) = 0

Rearranging, �x
a

�N a
x2
[(N � 1)vi � nx ] = 0,

And solving for x , we �nd bidder i�s optimal bidding function,

x(vi ) =
N � 1
N

vi



FPA with N bidders

Let�s depict the optimal bidding function in the FPA with N
bidders x(vi ) = N�1

N vi

Comparative statics:
Bid shadding diminishes as N increases.
That is, the bidding function approaches 450�line.



FPA with risk-averse bidders

Utility function is concave in income, x , e.g., u(x) = xα,

where 0 < α � 1 denotes bidder i�s risk-aversion parameter.
Example:u(x) = x1/2 =

p
x

[Note that when α = 1, the bidder is risk neutral.]

Hence, the expected utility of submitting a bid x is

EUi (x jvi ) =
x
a|{z}

prob(win)

(vi � x)α

Note that the only element that changed is that now the
payo¤ if winning, vi � x , yields a utility (vi � x)α rather than
vi � x under risk neutrality.



FPA with risk-averse bidders

Taking �rst-order conditions with respect to his bid, x ,

1
a
(vi � x)α � x

a
α(vi � x)α�1 = 0,

and solving for x , we �nd the optimal bidding function,

x(vi ) =
vi

1+ α
.

Under risk-neutral bidders, α = 1, this function becomes
x(vi ) =

vi
2 , thus coinciding with what we found a few slides

ago.

But, what happens when α decreases (more risk
aversion)?(Next slide)



FPA with risk-averse bidders

Comparative statistics of optimal bidding function
x(vi ) =

vi
1+α .

Bid shading is ameliorated as bidders�risk aversion increases:

That is, the bidding function approaches the 450�line when α
approaches zero.



FPA with risk-averse bidders

Intuition: for a risk-averse bidder:

the positive e¤ect of slightly lowering his bid, arising from
getting the object at a cheaper price, is o¤set by...
the negative e¤ect of increasing the probability that he loses
the auction.

Ultimately, the bidder�s incentives to shade his bid are
diminished.



Second-price auctions

Let�s now move to second-price auctions.



Second-price auctions

Bidding your own valuation, bi (vi ) = vi , is a weakly dominant
strategy,

i.e., it yields a larger (or the same) payo¤ than submitting any
other bid.

In order to show this, let us �nd the expected payo¤ from
submitting...

A bid that coincides with your own valuation, bi (vi ) = vi ,
A bid that lies below your own valuation, bi (vi ) < vi , and
A bid that lies above your own valuation, bi (vi ) > vi .

We can then compare which bidding strategy yields the
largest expected payo¤.



Second-price auctions

Bidding your own valuation, bi (vi ) = vi ...

Case 1a: If his bid lies below the highest competing bid, i.e.,
bi < hi where hi = max

j 6=i
fbjg,

then bidder i loses the auction, obtaining a zero payo¤.



Second-price auctions

Bidding your own valuation, bi (vi ) = vi ...

Case 1b: If his bid lies above the highest competing bid, i.e.,
bi > hi , then bidder i wins, paying a price of hi .

He obtains a net payo¤ of vi � hi .



Second-price auctions

Bidding your own valuation, bi (vi ) = vi ...

Case 1c: If, instead, his bid coincides with the highest competing
bid, i.e., bi = hi , then a tie occurs.

For simplicity, ties are solved by randomly assigning the object
to the bidders who submitted the highest bids.
As a consequence, bidder i�s expected payo¤ becomes
1
2 (vi � hi ).



Second-price auctions

Bidding below your valuation, bi (vi ) < vi ...

Case 2a: If his bid lies below the highest competing bid, i.e.,
bi < hi ,

then bidder i loses, obtaining a zero payo¤.



Second-price auctions

Bidding below your valuation, bi (vi ) < vi ...

Case 2b: if his bid lies above the highest competing bid, i.e.,
bi > hi ,

then bidder i wins, obtaining a net payo¤ of vi � hi .



Second-price auctions

Bidding below your valuation, bi (vi ) < vi ...

Case 2c: If, instead, his bid coincides with the highest competing
bid, i.e., bi = hi , then a tie occurs,

and the object is randomly assigned, yielding an expected
payo¤ of 12 (vi � hi ).



Second-price auctions

Up to this point, we have shown that bidding below your
valuation, b(vi ) < vi , yields the same utility level as bidding
your own valuation, b(vi ) = vi , or a lower payo¤.

Let us now examine whether this bidder can improve his
payo¤ by bidding above his valuation, b(vi ) > vi .



Second-price auctions

Bidding above your valuation, bi (vi ) > vi ...

Case 3a: if his bid lies below the highest competing bid, i.e.,
bi < hi ,

then bidder i loses, obtaining a zero payo¤.



Second-price auctions

Bidding above your valuation, bi (vi ) > vi ...

Case 3b: if his bid lies above the highest competing bid, i.e.,
bi > hi , then bidder i wins.

His payo¤ becomes vi � hi , which is positive if vi > hi , or
negative otherwise.



Second-price auctions

Bidding above your valuation, bi (vi ) > vi ...

Case 3c: If, instead, his bid coincides with the highest competing
bid, i.e., bi = hi , then a tie occurs.

The object is randomly assigned, yielding an expected payo¤ of
1
2 (vi � hi ), which is positive only if vi > hi .



Second-price auctions

Summary:

Bidder i�s payo¤ from submitting a bid above his valuation:

either coincides with his payo¤ from submitting his own value
for the object, or
becomes strictly lower
thus nullifying his incentives to deviate from his equilibrium
bid of bi (vi ) = vi .

Hence, there is no bidding strategy that provides a strictly
higher payo¤ than bi (vi ) = vi in the SPA.

All players bid their own valuation, without shading their bids,

unlike in the optimal bidding function in FPA.



Second-price auctions

Remark:

The above equilibrium bidding strategy in the SPA is
una¤ected by:

the number of bidders who participate in the auction, N , or
their risk-aversion preferences.

They would nonetheless a¤ect:

the chances of winning (which decreases as more bidders
participate in the auction), and
the payo¤ if winning (which decreases in the risk aversion
parameter, α ).



E¢ ciency in auctions

We say that an auction (and generally any allocation
mechanism) is e¢ cient if :

The object is assigned to the bidder with the highest valuation.

Otherwise, the outcome of the auction cannot be e¢ cient...

since there exist alternative reassignments that would still
improve welfare.
FPA and SPA are, hence, e¢ cient, since:
The player with the highest valuation submits the highest bid
and wins the auction.
Lottery auctions are not necessarily e¢ cient.



Common value auctions

In some auctions all bidders assign the same value to the
object for sale.

Example: Oil lease
Same pro�ts to be made from the oil reservoir.



Common value auctions

Firms, however, do not precisely observe the value of the
object (pro�ts to be made from the reservoir) before
submitting their bids.

Instead, they only observe an estimate of these potential
pro�ts:

from a consulting company, a bidder/�rm�s own estimates, etc.



Common value auctions

Consider the auction of an oil lease.

The true value of the oil lease (in millions of dollars) is
v 2 [10, 11, ..., 20]
Firm A hires a consultant, and gets a signal s

s =
�

v + 2 with prob 1
2 (overestimate)

v � 2 with prob 1
2 (underestimate)

That is, the probability that the true value of the oil lease is v ,
given that the �rm receives a signal s , is

prob(v js) =
� 1

2 if v = s � 2 (overestimate)
1
2 if v = s + 2 (underestimate)



Common value auctions

If �rm A was not participating in an auction, then the
expected value of the oil lease would be

1
2
(s � 2)| {z }

if overestimation

+
1
2
(s + 2)| {z }

if underestimation

=
s � 2+ s + 2

2
=
2s
2
= s

Hence, the �rm would pay for the oil lease a price p < s,
making a positive expected pro�t.



Common value auctions

What if the �rm participates in a FPA for the oil lease against
�rm B?

Every �rm uses a di¤erent consultant...

but they don�t know if their consultant systematically
overestimates or underestimates the value of the oil lease.

Every �rm receives a signal s from its consultant,

observing its own signal, but not observing the signal the other
�rm receives, every �rm submits a bid from f1, 2, ..., 20g.



Common value auctions

We want to show that bidding b = s � 1 cannot be optimal
for any �rm.

Notice that this bidding strategy seems sensible at �rst glance:

The �rm is bidding less than its signal, b < s.

So, if the true value of the oil lease was s, the �rm would
get some positive expected pro�t from winning.

In addition,bidding is increasing in the signal that the �rm
receives,i.e., b = s � 1 is increasing in s.
How come such a bidding strategy is not optimal? Let�s show
it.



Common value auctions

Let us assume that �rm A receives a signal of s = 10.

Then it bids b = s � 1 = 10� 1 = $9.

Given such a signal, the true value of the oil lease is

v =
�
s + 2 = 12 with prob 1

2
s � 2 = 8 with prob 1

2

In the �rst case (true value of 12)

�rm A receives a signal of sA = 10 (underestimation), and
�rm B receives a signal of sB = 14 (overestimation).

Then, �rms bid bA = 10� 1 = 9, and bB = 14� 1 = 13, and
�rm A loses the auction.



Common value auctions

In the second case, when the true value of the oil lease is
v = 8,

�rm A receives a signal of sA = 10 (overestimation), and
�rm B receives a signal of sB = 6 (underestimation).

Then, �rms bid bA = 10� 1 = 9, and bB = 6� 1 = 5, and
�rm A wins the auction.

However, the winner�s expected pro�t becomes

1
2
(8� 9) + 1

2
0 = �1

2

Negative pro�ts from winning.

Winning is a curse!!



Winner�s curse

In auctions where all bidders assign the same valuation to the
object (common value auctions),

and where every bidder receives an inexact signal of the
object�s true value...

The fact that you won...

just means that you received an overestimated signal of the
true value of the object for sale (oil lease).

How to avoid the winner�s curse?

Bid b = s � 2 or less,
take into account the possibility that you might be receiving
overestimated signals.



Winner�s curse - Experiments I

In the classroom: Your instructor shows up with a jar of
nickels,

Every student can look at the jar for a few minutes (getting an
imperfect signal of the jar�s content).



Winner�s curse - Experiments I

Then the instructor requests each student to submit a bid in a piece
of paper.

The bids are then read aloud and ranked, and the winner is
determined.

A recurrent observation in these experiments is that the
winner pays too much for the jar !



Winner�s curse - Experiments II

In the �eld: Texaco in auctions selling the mineral rights to
o¤-shore properties owned by the US government.

All �rms avoided the winner�s curse (their average bids were
about 1/3 of their signal)...
Expect for Texaco:

Not only their executives fall prey of the winner�s curse,
They submitted bids above their own signal!
They needed some remedial auction theory!



Auction Theory -Additional Readings

Vijay Krishna (2009). Auction Theory. Academic Press.

Paul Milgrom (2004). Putting Auction Theory to work.
Cambridge University Press.

Paul Klemperer (2004). Auctions: Theory and Practice.
Princeton University Press.


