Once thought to be ideal targets for polarized reflected light detection due to their large reflecting surfaces and proximity to their stars, hot Jupiters are in fact often poor candidates with low albedos. Following an introduction to polarimetry, in this talk I examine the dependency on condensate optical properties and formation altitude for producing a strong polarization signature. I examine which types of hot Jupiters may produce a better polarization signature and compare this to recent observations of hot Jupiters with world class polarimeters. I also examine the polarimetric signatures of smaller worlds, from hot super Earths and Ice Giants to true terrestrial twins in the framework of what a non-detection can tell us about a planet's physical state and which objects might be most amenable to polarimetric detection.