Fractons are an exotic type of quasiparticle which have emerged as a new frontier for condensed matter physics, with potential applications to quantum information storage. The defining feature of these particles is that an individual fracton is strictly immobile, while certain bound states of fractons can move freely. In this talk, I will give a broad overview of fractons, with emphasis on my contributions to the field. I will begin with the theoretical description for fractons in terms of tensor gauge theories and higher moment conservation laws, followed by a treatment of various physical realizations of fractons, such as spin models and elasticity theory. I will also describe some of the unusual phenomenology of fracton systems, such as their non-ergodic behavior and pseudo-gravitational physics.