
Optimization: 

For each problem below, determine the optimal output level for each firm given the inverse demand 

function and marginal cost. 

 

1. 𝑝 = 500 − 𝑞     𝑀𝐶 = 50 

 

Setting up the profit maximization problem, 

 

max
𝑞

 (500 − 𝑞)𝑞 − 50𝑞 

 

Calculating a first-order condition, 

 
𝑑𝜋

𝑑𝑞
= 500 − 2𝑞 − 50 = 0 

 

Solving for 𝑞, 

 

𝑞∗ =
450

2
= 225 

 

2. 𝑝 = 1000 − 2𝑞     𝑀𝐶 = 200 

 

Setting up the profit maximization problem, 

 

max
𝑞

 (1000 − 2𝑞)𝑞 − 200𝑞 

 

Calculating a first-order condition, 

 
𝑑𝜋

𝑑𝑞
= 1000 − 4𝑞 − 200 = 0 

 

Solving for 𝑞, 

 

𝑞∗ =
800

4
= 200 

 

3. 𝑝 = 300 − 𝑞1 − 𝑞2     𝑀𝐶 = 60 

 

Setting up the profit maximization problem for firm 1, 

 

max
𝑞1

 (300 − 𝑞1 − 𝑞2)𝑞1 − 60𝑞1 

 



Calculating a first-order condition for firm 1, 

 
𝜕𝜋1

𝜕𝑞1
= 300 − 2𝑞1 − 𝑞2 − 60 = 0 

 

Setting up the profit maximization problem for firm 2, 

 

max
𝑞2

 (300 − 𝑞1 − 𝑞2)𝑞2 − 60𝑞2 

 

Calculating a first-order condition for firm 2, 

 
𝜕𝜋2

𝜕𝑞2
= 300 − 𝑞1 − 2𝑞2 − 60 = 0 

 

Note here that we can invoke symmetry; let 𝑞 = 𝑞1 = 𝑞2, 

 

300 − 2𝑞 − 𝑞 − 60 = 0 

3𝑞 = 240 

𝑞∗ = 𝑞1
∗ = 𝑞2

∗ = 80 

 

4. 𝑝1 = 400 − 2𝑞1 − 𝑞2     𝑀𝐶1 = 0 

𝑝2 = 400 − 𝑞1 − 2𝑞2     𝑀𝐶2 = 0  

 

Setting up the profit maximization problem for firm 1, 

 

max
𝑞1

 (400 − 2𝑞1 − 𝑞2)𝑞1 

 

Calculating a first-order condition for firm 1, 

 
𝜕𝜋1

𝜕𝑞1
= 400 − 4𝑞1 − 𝑞2 = 0 

 

Setting up the profit maximization problem for firm 2, 

 

max
𝑞2

 (400 − 𝑞1 − 2𝑞2)𝑞2 

 

Calculating a first-order condition for firm 2, 

 
𝜕𝜋2

𝜕𝑞2
= 400 − 𝑞1 − 4𝑞2 = 0 

 

Note here that we can invoke symmetry; let 𝑞 = 𝑞1 = 𝑞2, 

 

400 − 4𝑞 − 𝑞 = 0 



5𝑞 = 400 

𝑞∗ = 𝑞1
∗ = 𝑞2

∗ = 80 

 

For each problem below, calculate the optimal bundle of goods 𝑥 and 𝑦 given the utility function and 

budget constraint. 

 

5. 𝑢(𝑥, 𝑦) = 𝑥0.4𝑦0.6      2𝑥 + 3𝑦 ≤ 50 

 

Setting up the utility maximization problem, 

 

max
𝑥,𝑦,𝜆

 𝑥0.4𝑦0.6 + 𝜆(50 − 2𝑥 − 3𝑦) 

 

Calculating first-order conditions, 

 
𝜕ℒ

𝜕𝑥
= 0.4𝑥−0.6𝑦0.6 − 2𝜆 = 0 

𝜕ℒ

𝜕𝑦
= 0.6𝑥0.4𝑦−0.4 − 3𝜆 = 0 

𝜕ℒ

𝜕𝜆
= 50 − 2𝑥 − 3𝑦 = 0 

 

Rearranging then dividing the first equation by the second, 

 

0.4𝑥−0.6𝑦0.6

0.6𝑥0.4𝑦−0.4
=

2𝜆

3𝜆
 

2𝑦

3𝑥
=

2

3
 

𝑦 = 𝑥 

Substituting this into the third equation, 

 

50 − 2𝑥 − 3𝑥 = 0 

5𝑥 = 50 

𝑥∗ = 10 

 

From the tangency condition, 

 

𝑦∗ = 𝑥∗ = 10 

 

Checking the Lagrange multiplier, 

 

𝜆∗ = 0.4(𝑥∗)−0.6(𝑦∗)0.6 = 0.4 

 



Since the Lagrange multiplier is positive, the constraint is binding and we have our 

equilibrium. 

 

6. 𝑢(𝑥, 𝑦) = −(𝑥 − 3)3(𝑦 − 2)2     𝑥 + 𝑦 ≤ 10    

 

Setting up the utility maximization problem, 

 

max
𝑥,𝑦,𝜆

 −(𝑥 − 3)3(𝑦 − 2)2 + 𝜆(10 − 𝑥 − 𝑦) 

 

Calculating first-order conditions, 

 
𝜕ℒ

𝜕𝑥
= −3(𝑥 − 3)2(𝑦 − 2)2 − 𝜆 = 0 

𝜕ℒ

𝜕𝑦
= −2(𝑥 − 3)3(𝑦 − 2) − 𝜆 = 0 

𝜕ℒ

𝜕𝜆
= 10 − 𝑥 − 𝑦 = 0 

 

Rearranging then dividing the first equation by the second, 

 

−3(𝑥 − 3)2(𝑦 − 2)2

−2(𝑥 − 3)3(𝑦 − 2)
=

𝜆

𝜆
 

3(𝑦 − 2)

2(𝑥 − 3)
= 1 

3𝑦 − 6 = 2𝑥 − 6 

3𝑦 = 2𝑥 

 

Substituting this into the third equation, 

 

10 − 𝑥 −
2

3
𝑥 = 0 

5

3
𝑥 = 10 

𝑥∗ = 6 
 

From the tangency condition, 

 

𝑦∗ =
2

3
𝑥∗ = 4 

 

Checking the Lagrange multiplier, 

 

𝜆∗ = −3(𝑥∗ − 3)2(𝑦∗ − 2)2 = −108 

 



Since the Lagrange multiplier is negative, the constraint does not bind and we can 

discard it. Setting up a new utility maximization problem, 

 

max
𝑥,𝑦

 −(𝑥 − 3)3(𝑦 − 2)2 

 

Calculating first-order conditions, 

 
𝜕ℒ

𝜕𝑥
= −3(𝑥 − 3)2(𝑦 − 2)2 = 0 

𝜕ℒ

𝜕𝑦
= −2(𝑥 − 3)3(𝑦 − 2) = 0 

 

This is just two sets of one equation and one unknown. The solutions to these equations 

are 𝑥∗ = 3 and 𝑦∗ = 2.  


