ABSTRACT: Ti$_3$C$_2$Tx MXene is a member of the recently discovered two-dimensional early transition metal carbide and nitride family of MXenes with potential applications in energy storage and heterogeneous catalysis at elevated temperatures. Here, we apply a suite of in situ techniques to probe Ti$_3$C$_2$Tx MXene’s thermal evolutions, including in situ X-ray diffraction (XRD), in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), and integrated thermogravimetry—differential scanning calorimetry—mass spectrometry (TG-DSC-MS). In light of this set of in situ investigations, we find heterogeneity in the layering of Ti$_3$C$_2$Tx MXene revealed only at higher temperatures. Our findings present behavior up to 600 °C, particularly interlayer water and −OH surface end-capping groups. In one group of layers, their interlayer spacing shrinks as water deintercalates, but the other group of layers unexpectedly shows no change in the interlayer spacing. This is strong evidence that intercalants act as guest pillaring agents in the latter layering group, which stabilize these layers at higher temperatures while keeping the interlayer space accessible.

KEYWORDS: MXenes, 2D layered materials, heterostructure, interlayer heterogeneity, in situ XRD, thermal analysis, cobalt fluoride

INTRODUCTION

MXene is a synthetic clay-like material family of early transition metal carbides and nitrides. Owing, especially, to MXene’s nanolayered structure with ample interlayer space, this family demonstrates a potential application in a variety of fields such as energy storage, catalysis, environmental remediation, and electromagnetic shielding. MXene is of the form M$_{n+1}$X$_n$Tx, where M is an early transition metal such as Ti or V, X is C or N, and T$_x$ is a capping end group (−F, −OH, =O, etc.). M$_{n+1}$X$_n$Mxene is synthesized by the selective etching of the M$_{n+1}$AX$_n$MAX phase, where A is most commonly Al or Ga. The Ti$_3$C$_2$T$_x$ MXene is investigated here because it is the most widely researched and the first discovered. To enable MXenes’ applicability and scalability in a broad range of environments, it is imperative to understand the physicochemical properties of their interfaces and structures under processing and operation conditions as temperature varies.

Synthesized by etching with various aqueous solutions, the interfacial and structural phenomena of MXenes revealed by thermal treatments are rich. Recently, Seredych et al. investigated the thermal behavior of Ti$_3$C$_2$T$_x$, Mo$_2$CT$_x$, and Nb$_2$CT$_x$ synthesized in various acidic environments using thermogravimetry coupled with mass spectrometry (TG-MS) with a particular interest in determining the effect of synthesis on surface chemistry. Different etchants and etchant concentrations led to distinctive surface functional groups and different degrees of interlayer hydration; however, regardless of the surface chemistry of Ti$_3$C$_2$T$_x$, its decomposition temperatures remained similar. Their mass spectrom-
etry results evidenced two types of surface-bonded water, loosely confined interlayer water species and more tightly bonded interlayer water molecules. In parallel, Thakur et al. reported an investigation into thermal evolutions of V_{2}C_{7}T_{x} with a focus on surface bonding using in situ Raman spectroscopy and ex situ X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM).11 Their study suggested thermal dehydration led to a decrease in interlayer space. Other studies have investigated the thermal stability of MXenes such as Ti_{3}C_{2}T_{x}, V_{3}C_{7}T_{x}, Ti_{2}CT_{x}, and Ti_{1}C_{2}T_{x} composites using a combination of differential scanning calorimetry (DSC) and thermogravimetry (TG).12,13,22-25 The general phenomena are interlayer water loss between 100 and 250 °C, the loss of surface groups between 600 and 900 °C, and finally total decomposition between 800 and 1100 °C. The studies investigating the thermal stability of Ti_{3}C_{2}T_{x} MXene have been etched in different environments (i.e., HF or NH_{4}HF_{2}).10,13,14,22 In summary, it was found that the properties of MXenes under thermal treatments are strongly dependent on their composition and surface chemistry determined by the etching environment. The synthesis and performance of MXenes have been extensively studied. To our knowledge, thus far, systematic investigation into the interfacial, structural, and thermal evolutions of MXenes as temperature varies using in situ methods under a controlled gas atmosphere is rarely performed. Understanding the thermal and structural responses as well as the bonding evolution in situ or in real time as a function of temperature is essential and critical as the MXene materials might undergo a wide range of temperatures in the actual processing or a working environment.

In this study, we present integrated research using in situ experimental approaches to reveal the structural evolutions, interfacial phenomena, and thermal pathways of Ti_{3}C_{2}T_{x} MXene at elevated temperatures in which in situ XRD with in situ diffuse reflectance infrared Fourier transform spectroscopy (in situ DRIFTS) and TG-DSC-MS were systematically coupled. The Ti_{3}C_{2}T_{x} MXene sample used here is uniquely synthesized in a CoF_{2}/HCl etching environment from its parent Ti_{3}AlC_{2} MAX phase we reported earlier.23 Moreover, we investigate its structure, morphology, and atomic microstructure using ex situ XRD, SEM, and high-resolution transmission electron microscopy (HRTEM) to support conclusions from in situ experiments and simultaneous thermal analysis. Our results suggest that CoF_{2}/HCl etching leads to intercalated water, a heterogeneous internal surface, and surprisingly, simultaneous formation of intercalated guest species acting as pillaring agents, which support a large MXene interlayer distance even at high temperatures after complete interlayer dehydration and dehydroxylation.

EXPERIMENTAL METHODS

Synthesis of Ti_{3}C_{2}T_{x} by CoF_{2}/HCl Etching. Ti_{3}AlC_{2} MAX phase with a reported mean particle size of ~800 nm was purchased from Luoyang Tongrun Info Technology Co., Ltd. 1g of Ti_{3}AlC_{2} corresponding to 4.3 wt % was added to 20 mL of 6 M HCl, prepared from 37 wt % HCl (Sigma-Aldrich), and mixed in a 50 mL polypropylene test tube. 1.75 g of CoF_{2} (Sigma-Aldrich) corresponded to a molar ratio of 3.6 CoF_{2} to Ti_{3}AlC_{2}. The solution was mixed for 30 s using a test tube agitator and then put into the bath sonicator for 30 min. After which, the mixture was heated to 60 °C for 48 h. The suspension was washed with copious amounts of deionized water over a vacuum filtration system and left to dry for 12 h. The powder was collected and dried overnight in vacuum at ~60 °C.

Ex Situ Powder X-ray Diffraction (XRD) and Compositional Analyses. Phase analysis of CoF_{2} etched Ti_{3}C_{2}T_{x} MXene was performed by ex situ powder X-ray diffraction (ex situ XRD). Ex situ XRD data was obtained using a Rigaku Smartlab with Cu Ka radiation (k = 1.5406 Å) operated at a scan rate of 4°/min in the 2θ range of 5–80°. The elemental composition of Al, Co, and Ti was measured using an Agilent 5100 inductively coupled plasma optical emission spectrometer (ICP-OES). Samples were prepared by dissolving samples in 35 wt % HNO_{3} at room temperature before diluting to 2 wt % HNO_{3}.

Electron Microscopy (EM). The morphology was examined using scanning electron microscopy (SEM; Quanta 200F) in the Franceschi Microscopy and Imaging Center at Washington State University and high-resolution transmission electron microscopy (HRTEM; FEI Titan 80-300 TM with a monochromator, image aberration corrector, and a PHENIX energy dispersive X-ray spectrometer detector) at Los Alamos National Laboratory. ImageJ (NIH) was employed for micrograph analysis.24

Thermal Analysis. The thermal analyses using integrated TG-DSC-MS were carried out on a Netzsch Instrument STA 449 F3 Jupiter coupled to a QMS 403 D Aéolos quadrupole mass spectrometer. The instrument has a temperature resolution of 0.001 K, a DSC resolution of 1 μW, an enthalpy accuracy of 1% measured with indium, and a balance resolution of 0.1 μg. In each measurement, about 20 mg of powdered sample was analyzed in an alumina crucible from 40 to 1000 °C at 10 °C/min under gas flow, either nitrogen or air. The evolved gases of the TG-DSC experiments were identified simultaneously by the coupled MS. The data were analyzed using the Proteus and Dispsav software packages. MS, DTG, and DDSC curves were smoothed in Origin using the Adjacent-Average method with 5 points. This system was also used in our earlier studies on MXenes, shale rocks, zeolites, and layered double hydroxides (LDHs).23,24,30,97

In Situ Diffuse Reflectance Infrared Fourier Transform Spectroscopy (in situ DRIFTS). Infrared spectra were obtained at 4 cm⁻¹ resolution between 4000 and 600 cm⁻¹ using a Bruker Tensor 27 FTIR spectrometer. 128 scans were used for each spectrum. KBr was used to get the background at each temperature. About 20 mg of sample (mixture of KBr and sample at a weight ratio of KBr/sample = 10:1) was used. The sample was ramped to different temperatures (50, 100, 150, 200, 250, 300, 350, and 400 °C) at 10 °C/min with a hold time of 5 min under a flow of 50 mL/min helium.

In Situ X-ray Diffraction (in situ XRD). The structural evolution from heat treatment was characterized by in situ powder X-ray diffraction (in situ XRD). XRD data were obtained using a Rigaku Smartlab with Cu Ka radiation (k = 1.5406 Å) coupled with an Anton Paar XRR 900 furnace operated at a scan rate of 4°/min in the 2θ range of 5–65° with a heating rate of 10 °C/min under 50 mL/min of helium with hold times of 5 min before measurement.

RESULTS

Complete etching of Ti_{3}C_{2}T_{x} MXene using CoF_{2}/HCl was ensured by ex situ XRD (see Figure 1). The patterns of etched Ti_{3}C_{2}T_{x} MXene suggest complete conversion to MXene from the MAX phase seen by displaying representative Ti_{3}C_{2}T_{x} MXene peaks at 2θ ~ 7° and 61° as well as the removal of Ti_{3}AlC_{2} MAX phase peaks at ~34°, 39°, and 42°. Small amounts of the AlF_{3}/3H_{2}O byproduct are present, indicated by the 2θ peak at ~17°.23 According to ICP-OES analysis, CoF_{2}/HCl etched Ti_{3}C_{2}T_{x} MXene contains significant Al¹⁷, showing an average Al/Ti ratio of ~0.07. No residual Co-containing species from the synthesis was detected. Complete ICP-OES analysis data is presented in Table S1.

The morphological features were examined by SEM (see Figure 2a). CoF_{2}/HCl etched Ti_{3}C_{2}T_{x} MXene presents the expected layered book-like morphology, further supporting the ex situ XRD analysis of complete etching.25 The atomic-scale microstructure of the MXene sample is revealed by the HRTEM image in Figure 2b. Interestingly, there appears to be
Stage II weak. That water signals. According to the MS data (endothermic calorimetric events (see Figure 3b). In three stages. DSC and DDSC results show three using TG-DSC-MS (shown in Figure 3a).

Transmission electron microscopy (HRTEM). And TEM data, we could not determine that the aluminum fluoride species is interlayer confined or surface anchored. This will be investigated in detail with in situ characterizations.

The thermal evolutions and intricate interfacial interactions of the CoF2/HCl etched Ti3C2T x MXene were investigated using TG-DSC-MS (shown in Figure 3a–c). Mass loss occurs in three stages. DSC and DDSC results show three endothermic calorimetric events (see Figure 3b). Stage I is the loss of water, approximately 0.8 wt %, loosely attached on the external surface of MXene, and mainly occurs below 100 °C. The very weak endothermic DSC peak further confirms that water–MXene interactions on the external surface are weak. Stage II mass loss (~2.8 wt %) occurs from 100 to 175 °C, accompanied by two overlapped endothermic calorimetric signals. According to the MS data (m/z 18), Stage II weight loss is due to the deintercalation of MXene’s tightly bound intercalated water. The existence of a pair of overlapped peaks in the DTG, DSC, and MS profiles strongly suggests that there are two groups of energetically distinctive confined water within MXene’s interlayer space exhibiting two unique dehydration phenomena in thermal analysis. Particularly, intercalated water molecules, not in the internal surface of MXene, that interact merely with the other confined water molecules through water–water intermolecular interactions are liberated first, at about 112 °C, while the more tightly bonded water close to the surface functional groups, especially –OH and –F groups, are desorbed at 149 °C (see Figure 3a–c).

Stage III occurs above 175 °C owing to gradual detachment of surface functional groups, such as –OH and –F. To a limited degree, the decomposition of AlF3·3H2O and its intermediate, AlF3·0.5H2O, to AlF3 may also contribute to the weight loss and thermal events above 175 °C, but from the XRD analysis, we expect the contribution to be minor. The TG curve does not flatten even up to 600 °C, indicating continued detachment of the surface groups. Thermal analysis results strongly suggest that, other than the bulk water on the external surface of MXene, there are two types of interlayer water species. The detachment of surface groups continues after complete dehydration at about 200 °C lasting until 600 °C.

Dehydration phenomena in thermal analysis. Particularly, water molecules, not in the internal surface of MXene, interact merely with the other confined water molecules through water–water intermolecular interactions are liberated first, at about 112 °C, while the more tightly bonded water close to the surface functional groups, especially –OH and –F groups, are desorbed at 149 °C (see Figure 3a–c). Thermal analysis results strongly suggest that, other than the bulk water on the external surface of MXene, there are two types of interlayer water species. The detachment of surface groups continues after complete dehydration at about 200 °C lasting until 600 °C. We hesitate to quantify the dehydration enthalpies of these two water–MXene interactions because of the small magnitudes of DSC peaks in Figure 3b. On the other hand, the change in sample morphology as temperature increases was also investigated using SEM and presented in Figure 4. Compared with the SEM image at room temperature in Figure 4a, after isothermally heating at 600 °C for 3 h in an inert atmosphere (see Figure 4b), Ti3C2T x MXene retains its book-like layered morphology with open interlayer space up to 600 °C despite a slightly smoothed surface and edges.

In situ DRIFTS spectra are presented in Figure 5. The broad peak in the range of 4000 to 3200 cm−1 and smaller sharper peaks around 1580 cm−1 indicate –OH bonding of tightly bound surface water, the intercalated water. The peak at 1580 cm−1 can be seen in the magnified in situ DRIFTS spectra presented in Figure S1. The peak at 1580 cm−1 vanishes at 100 °C. The broad peak from 4000 to 3200 cm−1 subsides and is difficult to distinguish above 100 °C. This corresponds with the loss of interlayer water. The peak at ~1390 cm−1 can be attributed to –OH end groups (Ti–OH). The intensity of this peak decreases at 100 °C while water is actively
deintercalated and then reemerges at 150 °C and becomes better resolved until 250 °C. Matching the thermal analysis, most of the water loss occurs at less than 200 °C. This indicates that –OH bonded surface groups are stable only up to 400 °C and are removed below 500 °C, which implies that these hydroxyl surface groups would evolve as water, leaving behind reacted near-surface TiO₂, which is evidenced and verified as occurring at 500 °C from the structural analysis results presented below. Additionally, the IR absorbance signals between 1400 and 1000 cm⁻¹ are clear evidence of C–F stretching on the MXene surface, similar to fluoro compounds. This may be evidence of Ti leaching during etching due to the harsh reaction conditions used. In sum, between 100 and 200 °C, water–surface interactions are concluded, and hydroxyl surface groups are removed at less than 500 °C.

The structure as a function of temperature was investigated using in situ XRD. The XRD patterns from 5° to 65° of thermally treated CoF₂/HCl etched Ti₃C₂Tₓ MXene are shown in Figure 6. The reflection peaks of (110) and (002) correspond to a, interplanar unit cell distance, and c, interlayer unit cell distance, lattice parameters. Up to 100 °C, no detectable structural change is observed. As temperature increases, the (002) peak broadens and shifts to the right.

Figure 3
Thermal analysis results of CoF₂/HCl etched Ti₃C₂Tₓ MXene in nitrogen at 10 °C/min. (a) Thermogravimetry and derivative thermogravimetry (TG-DTG), (b) differential scanning calorimetry and derivative differential scanning calorimetry (DSC-DDSC), and (c) mass spectrometry (MS) of m/z = 18.

Figure 4
Scanning electron microscopy (SEM) images of CoF₂/HCl etched Ti₃C₂Tₓ MXene (a) at room temperature and (b) after treatment at 600 °C in helium for 3 h.

Figure 5
In situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) spectra as a function of temperature from 50 to 400 °C in helium flow (50 mL/min).

Figure 6
In situ X-ray diffraction (XRD) patterns of CoF₂/HCl etched Ti₃C₂Tₓ MXene as a function of temperature from 30 to 600 °C in helium (50 mL/min), 2θ from 5 to 65°.
indicating a growing distribution in interlayer spacings and a decrease in the magnitude of interlayer space. This is due to, initially, water deintercalation and, finally, loss of end-capping groups (−F, −OH, etc.) as indicated by the in situ DRIFTS analysis above. This trend can be seen to continue through heat treatment up to 600 °C. The simultaneous oxidation of the near-surface titanium of Ti₃C₂Tex into anatase TiO₂ is apparent at 500 °C, shown by the emergence of the peak at ∼26°. This is further evidence of the loss of surface functional groups, as the oxygen to form TiO₂ must come from the sample due to the inert atmosphere (Ti=O to TiO₂ and Ti–OH to H₂O and TiO₂).

Lattice parameters as a function of temperature are presented in Figure 7. Ti₃C₂Tex MXene has hexagonal closed packing. From 30 to 200 °C, the c lattice parameter, initially 24.6 Å, decreases dramatically to 21.1 Å, due to water leaving the interlayer space. The c lattice parameter stabilizes at 20.5 Å after residual water deintercalation after 300 °C, up to 400 °C. From 400 to 600 °C, the c lattice parameter further decreases to 20.0 Å as end-capping groups are removed. The a lattice parameter increases with temperature up to 200 °C and then remains constant. This is expected to be due to thermal expansion. Overall, the total change is minor compared to the c lattice parameter. Table S2 presents detailed structural information on lattice parameters and unit cell volumes for the Ti₃C₂Tex MXene phase at the measured temperatures.

In Figure 8, in situ XRD patterns of CoF₂/HCl etched Ti₃C₂Tex MXene as a function of temperature from 30 to 600 °C in helium, 2θ from 5 to 10°. Å remains constant as temperature increases. This phenomenon strongly suggests a guest species in the interlayer space acting as a pillaring agent, allowing the deintercalation of water at high temperatures with a large interlayer space. In general, the structural analysis gives us a complementary perspective into the dehydration and surface group decomposition but also points us to a new phenomenon for CoF₂/HCl etched Ti₃C₂Tex MXene, which features a large interlayer space that does not change during dehydration and decomposition.

DISCUSSION

We examined the thermal stability, structural evolution, and surface bonding of Ti₃C₂Tex etched in a unique CoF₂/HCl environment using integrated thermal techniques. We present a summary of the thermal behavior and then follow it with a more in-depth discussion on the details of multistep dehydration, −OH surface group detachment, and an unexpected “assemblage” of layers that retain a large interlayer spacing at high temperatures.

Stage I: 30 to 100 °C. In Stage I, the dehydration of bulk water occurs. In other words, the loosely adsorbed external surface waters are removed.

Stage II: 100 to 175 °C. Stage II results in the deintercalation of the weakly confined interlayer water and then the tightly bonded water close to and on the internal surface of MXene. Any remaining intercalated waters are removed, and −OH or −F surface groups emerge and remain stable. The sample experiences a significant decrease in the interlayer distance.

Stage III: 175 to 600 °C. In Stage III, the surface end groups detach, and −OH groups react among themselves to produce H₂O and near-surface TiO₂, leading to a relatively small decrease in interlayer distance and growing disorder in the interlayer distance intercalated guest species, leading to a pillaring phenomena.

When one considers dehydration, the majority of water loss occurs below 175 °C. From the TG-DSC-MS and in situ DRIFTS, it is clear that there are two types of water loss: first, the dehydration of loosely confined water having only hydrogen bonding with adjacent water molecules under
confinement and, second, the removal of more tightly bound water having surface–water interactions. The study by Seredych et al. supports our findings, which evidenced two types of intercalated waters.10 It was shown that a larger interlayer spacing was found in a 30 wt % HF etched MXene compared to a 5 or 10 wt % HF etched MXene, which exhibit smaller interlayer spacings, leading to these two distinct intercalated waters.10,32 This is supported by our structural analysis showing two layering distances with a water bilayer (24.6 Å, room temperature) and multilayers of water (27.6 Å, revealed after heat treatment).33–35 The prethermally treated lattice parameter values of $a = 3.0$ Å and $c = 24.6$ Å correspond well with the lattice constants determined from Na' and K' intercalated Ti$_3$C$_2$T$_x$ MXene.31,33–35 Upon heating to 600 °C, the unintercalated Ti$_3$C$_2$T$_x$'s interlayer space decreases 4.6 Å, again implying a bilayer of intercalated water.34 Here, water loss occurs at lower temperatures than Ti$_3$C$_2$T$_x$ etched in lower percentages of HF but has dehydration behaviors similar to Ti$_3$C$_2$T$_x$ etched in 30, 40, and 50 wt % HF.10,14,36 This may be due to two factors. First, the presence of a more open layering seen by the large c lattice parameter leads to less tightly confined multilayer waters and, second, higher amounts of hydrophilic –OH end groups are found in lower concentration HF etchings with less hydrophilic –F groups being found in higher concentration HF etchings, such as our CoF$_2$/HCl environment. Supporting the existence of high amounts of –F end groups is the apparent lack of –OH groups observed in our in situ DRIFTS analysis. Compared with the literature, the IR spectra in Figure 5 show –OH (water) peaks with much less intensity than other reported MXene spectra.30,37,38 Our results, combined with those of others, provide an enhanced understanding of the relationship of water within the Ti$_3$C$_2$T$_x$ MXene's layers.

From the in situ DRIFTS and in situ XRD analyses (see Figures 5–8), we can draw conclusions about the –OH surface end groups. The –OH surface groups are evidenced to detach between 400 and 500 °C. As dihydroxylation proceeds, –OH groups are expelled as H$_2$O and leave behind localized near-surface TiO$_x$. Similar to our TG-DSC-MS results, Seredych et al. (TG-MS) and others (TG) do not see a noticeable loss of –OH surface groups at such low temperatures.10,12–15,22 For example, Seredych et al. detect functional group detachments at above 800 °C.10 We also do not see obvious thermogravimetric or thermal events in our TG-DSC-MS. The disparity can easily be explained by the dynamic nature of the TG techniques, which undergo rapid heating, and reactions that are kinetically or mass transport limited will be shifted along to higher temperatures compared to other methods. In situ DRIFTS and in situ XRD require relatively long hold times at each temperature sampled, allowing the sample to reach equilibrium. Supporting our analysis, we find that clays, natural two-dimensional layered systems such as chlorites, halloysites, smectites, and vermiculites, dehydroxylate between 400 and 600 °C.39,40 The removal of functional groups (–OH) results in a decrease in the interlayer spacing and overall degradation of the sample as evidenced by the formation of TiO$_x$ and more disordered layering, broader (002) peaks. However, after surface functional groups react and detach, the product retains its layered structure up to 600 °C. Because of MXene’s variability in surface chemistry, structure, and morphology resulting from its MAX parent phase and the etching environment, many opportunities exist to study the bonding of surface groups and their thermal and thermodynamic stability.

As a consequence of investigating the effect of heat treatment on the structure, we find two different (002) peaks for the same Ti$_3$C$_2$T$_x$ MXene studied (Figure 8). This is an unexpected new finding. Water deintercalates as temperature increases; one would expect a decrease in the c lattice parameter due to a shortening of the interlayer space.11 However, the second (002) peak at ∼6.3° remains stable when the temperature is raised. The c lattice parameter of this second (002) peak of Ti$_3$C$_2$T$_x$ MXene (27.6 Å) is similar to LiF/HCl etched “clay-like” MXene, which was reported to have a c lattice constant between 27 and 28 Å.33–35,41 This peculiarity implies that there is pillaring/swelling action occurring from species other than water in the interlayer space. MXene devoid of intercalants including water with a mix of both –F and –OH end groups displayed a c lattice parameter of 19.86(2) Å.13 On the basis of our compositional analysis, we reason that there is Al$^{3+}$ species within some of the interlayer spaces left over from the etching of Ti$_3$AlC$_2$ MAX, likely to be AlF$_3$·3H$_2$O. This is supported by the existence of AlF$_3$·3H$_2$O in our XRD analyses; AlF$_3$·3H$_2$O is a common byproduct that can be seen in large quantities when using a high ionic strength etching environment, such as CoF$_2$/HCl.33,42 From the difference in the two interlayer spaces, we estimate the thickness of the interlayer AlF$_3$·3H$_2$O to be ∼7.6 Å. We conclude that significant interfacial and structural heterogeneity exists with our sample, given that there are two types of layering: (i) with no pillaring guest agents, which sees a systematic decrease of interlayer space with water deintercalation and surface group detachment; (ii) with a pillaring guest agent (most likely Al$^{3+}$ species). A thermally stable pillaring action may have advantages for processes like catalysis, which require fast interlayer transport at higher temperatures. Further, using the technique of testing thermally treating MXene allows researchers to investigate intercalation actions without the interference of interlayer water. Our results raise significant questions about the composition of the pillaring agent and its relationship to Ti$_3$C$_2$T$_x$ MXene.

What is the exact composition and structure of the intercalants? Are there MXene particle groups with intercalated species in all of their layers or do they occur in some layers but not others of a particle group? Is there any order to the species within a layer?

Future work includes determining the composition of the intercalants and the relative distribution of the intercalated layers. The next rational steps consist of electron microscopy techniques to investigate the inner and outer sections of MXene (27.6 Å) is similar to LiF/HCl etched “clay-like” MXene, which was reported to have a c lattice constant between 27 and 28 Å.33–35,41 This peculiarity implies that there is pillaring/swelling action occurring from species other than water in the interlayer space. MXene devoid of intercalants including water with a mix of both –F and –OH end groups displayed a c lattice parameter of 19.86(2) Å.13 On the basis of our compositional analysis, we reason that there is Al$^{3+}$ species within some of the interlayer spaces left over from the etching of Ti$_3$AlC$_2$ MAX, likely to be AlF$_3$·3H$_2$O. This is supported by the existence of AlF$_3$·3H$_2$O in our XRD analyses; AlF$_3$·3H$_2$O is a common byproduct that can be seen in large quantities when using a high ionic strength etching environment, such as CoF$_2$/HCl.33,42 From the difference in the two interlayer spaces, we estimate the thickness of the interlayer AlF$_3$·3H$_2$O to be ∼7.6 Å. We conclude that significant interfacial and structural heterogeneity exists with our sample, given that there are two types of layering: (i) with no pillaring guest agents, which sees a systematic decrease of interlayer space with water deintercalation and surface group detachment; (ii) with a pillaring guest agent (most likely Al$^{3+}$ species). A thermally stable pillaring action may have advantages for processes like catalysis, which require fast interlayer transport at higher temperatures. Further, using the technique of testing thermally treating MXene allows researchers to investigate intercalation actions without the interference of interlayer water. Our results raise significant questions about the composition of the pillaring agent and its relationship to Ti$_3$C$_2$T$_x$ MXene.

What is the exact composition and structure of the intercalants? Are there MXene particle groups with intercalated species in all of their layers or do they occur in some layers but not others of a particle group? Is there any order to the species within a layer?

Future work includes determining the composition of the intercalants and the relative distribution of the intercalated layers. The next rational steps consist of electron microscopy techniques to investigate the inner and outer sections of MXene to define the effect of etching as a function of distance from the edge. Using other X-ray techniques, like the pair distribution function, could help illuminate any interlayer species’ structure and identity. Indeed, we are just beginning to characterize MXene at higher temperatures. The multifaceted approach presented here lays a foundation for future work investigating MXene’s intercalation phenomena, heterogeneity, and thermal evolutions.

CONCLUSIONS

By investigating the thermal behavior using in situ techniques, we segment Ti$_3$C$_2$T$_x$ MXene etched with CoF$_2$/HCl into three thermal stages up to 600 °C: Stage I, desorption of water loosely attached on the external surface; Stage II, thermal dehydration of intercalated (confined) water with distinct
energetic states; Stage III, detachment of surface functional groups and simultaneous formation of the pillaring structure. Two types of confined interlayer water (weakly confined and more strongly bonded) are uncovered, evidenced by deintercalation at different temperatures. –OH surface functional groups detach between 400 and 600 °C, implying that other functional groups (i.e., –F and –O) may also detach during this temperature range. Furthermore, during our investigation, two types of thermal behavior of the layers of our Ti$_3$C$_2$T$_x$ MXene are exhibited. From this, we surmise there exist two types of layering systems present in our sample. The layering groups are distinguished by the following: (i) an expected decrease in interlayer space as water deintercalates above 100 °C and (ii) no change in the interlayer distance due to an increase in the temperature and decrease in the interlayer water. We anticipate that this is due to Al$^{3+}$ species, which act as stabilizing pillars, enabling robust open architecture and allowing large interlayer distances even at high temperatures. Our mapping of the evolution of our Ti$_3$C$_2$T$_x$ MXene etched with CoF$_2$/HCl provides insight into its thermal stability and behavior at elevated temperatures and highlights the surface complexity (2D) and intricate pillaring structure (3D) of Ti$_3$C$_2$T$_x$ MXene etched with CoF$_2$/HCl.

ASSOCIATED CONTENT

* Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsami.1c10021.

Compositional analysis from ICP-OES, lattice parameters calculated from in situ XRD, and magnified view of in situ DRIFTS at the peak of \sim1580 cm$^{-1}$ (PDF)

AUTHOR INFORMATION

Corresponding Author

Di Wu — Alexandra Navrotsky Institute for Experimental Thermodynamics, The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Department of Chemistry, and Materials Science and Engineering, Washington State University, Pullman, Washington 99164, United States; orcid.org/0000-0001-6879-321X; Email: d.wu@wsu.edu

Authors

Cody B. Cockreham — Alexandra Navrotsky Institute for Experimental Thermodynamics and The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Department of Chemistry, Washington State University, Pullman, Washington 99164, United States; orcid.org/0000-0001-6879-321X; Email: d.wu@wsu.edu

Xianghui Zhang — Alexandra Navrotsky Institute for Experimental Thermodynamics and The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington 99164, United States

Jeffrey A. Eakin — The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington 99164, United States

Martinus Dewa — School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States

Houqian Li — The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington 99164, United States

Nan Li — Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States

Junning Sun — The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington 99164, United States

Su Ha — The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington 99164, United States

Cornelius F. Ivory — The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington 99164, United States

Yong Wang — The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington 99164, United States; Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States; orcid.org/0000-0002-8460-7410

Hongwu Xu — Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States

Complete contact information is available at: https://pubs.acs.org/10.1021/acsami.1c10021

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported by the institutional funds from the Gene and Linda Voiland School of Chemical Engineering Bioengineering and Alexandra Navrotsky Institute for Experimental Thermodynamics at Washington State University. C.B.C. was supported by the Achievement Rewards for College Scientists (ARCS) Fellowship from the ARCS Seattle Chapter and the Natural Resource Conservation Fund (NRCEF) through the Office of Research at WSU. J.A.E. was supported by the Department of Energy and National Nuclear Science Administration under Award Number DE-NA0003763. This work was performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science, Los Alamos National Laboratory, an affirmative action equal opportunity employer, is managed by Triad National Security, LLC for the U.S. Department of Energy’s NNSA, under contract 89233218CNA000001.

DEDICATION

This study is dedicated to a friend and colleague of D.W., Prof. Chia-Kuang (Frank) Tsung, Associate Professor of Chemistry at Boston College, who passed away on January 5, 2021, from complications due to COVID-19.

REFERENCES

