Short communication

Liquid–solid–solution synthesis of ultrafine Gd$_2$Zr$_2$O$_7$ nanoparticles with yield enhancement

Yao Yanga,b, Zhangyi Huanga,b, Chen Shia,c, Junjing Duana,c, Gang Chenga,b,c, Haomin Wangd, Di Wue,f,g,h, Jianqi Qia,b,c,*, Tiecheng Lua,b,c,**

a College of Physics, Sichuan University, Chengdu, 610064, China
b Key Laboratory of Radiation Physics and Technology of Ministry of Education, Sichuan University, Chengdu, 610064, China
c Key Laboratory of High Energy Density Physics of Ministry of Education, Sichuan University, Chengdu, 610064, China
d Institute for Advanced Study, Chengdu University, Chengdu, 610106, China
e Alexandra Navrotsky Institute for Experimental Thermodynamics, Washington State University, Pullman, WA, 99164, United States
f Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, 99164, United States
g Department of Chemistry, Washington State University, Pullman, WA, 99164, United States
h Materials Science and Engineering, Washington State University, Pullman, WA, 99164, United States

A modified liquid–solid–solution (LSS) phase transfer method has been applied to synthesize Gd$_2$Zr$_2$O$_7$ binary oxide nanoparticles. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), thermogravimetric analysis (TG) and differential scanning calorimetry (DSC) were employed to reveal the structural, morphological and energetic evolutions of both precursors and Gd$_2$Zr$_2$O$_7$ nanoparticle products. The Gd$_2$Zr$_2$O$_7$ nanoparticles synthesized using this method exhibit an average crystallite size of 1.7 nm, which have great potential to be applied in thermal barrier coatings (TBCs), solid oxide fuel cells (SOFCs) and nuclear waste immobilizations. Moreover, the method we developed in this study has a high Gd$_2$Zr$_2$O$_7$ nanoparticle yield of up to 89%.

1. Introduction

Gadolinium zirconate (Gd$_2$Zr$_2$O$_7$) has two phases, disordered fluoride and ordered pyrochlore. These Gd$_2$Zr$_2$O$_7$ phases have promising applications in thermal barrier coatings (TBCs), solid oxide fuel cells (SOFCs) and nuclear waste immobilizations because of low coefficient of thermal conductivity, high ionic conductivity at high temperature, and remarkable resistance to amorphization under ion beam irradiation [1–7]. These physical properties of Gd$_2$Zr$_2$O$_7$ have strong dependence on particle size and microstructure. Hence, to ensure their functionality, small size and the preferred microstructure have to be ensured. Compared with coarse-grained ceramics, nanoceramics with crystallite size < 100 nm exhibit enhanced radiation resistance [8], decreased thermal conductivity [9] and superior ionic/electrical conductivity [10,11]. Additionally, the dispersibility and crystallite size of powders also significantly impact the sintering behavior of nanoceramics. Typically, the powders with small particle size and less agglomerate exhibit high sintering activity [12,13]. Therefore, synthesis of Gd$_2$Zr$_2$O$_7$ nanoparticles with ultrafine crystallite size and low agglomeration is essential and crucial.

Synthesis of Gd$_2$Zr$_2$O$_7$ nanoparticles with different pathways have been detailed in earlier reports. Specifically, Ma et al. [14] prepared nearly spherical Gd$_2$Zr$_2$O$_7$ particles with different diameters using citric acid combustion (CAC, ~50 nm) and stearic acid combustion (SAC, ~10 nm). Recently, well-crystallized and highly dispersed Gd$_2$Zr$_2$O$_7$ nanoparticles with a narrow particle size distribution have been successfully synthesized by Huang et al. [15] using a facile solvothermal method. A homogeneous precipitation-solvothermal method has been reported by Tang et al. for preparation of well-crystallized and dispersed Gd$_2$Zr$_2$O$_7$ nanoparticles with grain sizes ranging from 20 to 30 nm [16]. These methods set the foundation for the present study. Moreover, these reports figured out the existing challenges, especially, particle agglomeration [14]; large Gd$_2$Zr$_2$O$_7$ particle size [16], and complex, multistep synthesis process [15]. Thus, there is a critical need to develop a straightforward, low-cost approach to synthesize monodispersed Gd$_2$Zr$_2$O$_7$ nanoparticles with small particle size.
2. Experimental methods

The LSS (Liquid-solid-solution) phase transfer method, initially reported by Wang et al. [17] in 2005, is based on phase transition and separation during hydrothermal reaction. The LSS phase transfer method have been extensively applied to synthesize small ceramic nanocrystalline, including TiO2, CuO, ZrO2, SnO2 and MF2O4 [17–20]. However, to the best of our knowledge, so far, the synthesis of Gd2Zr2O7 nanoparticles employing LSS phase transfer method has not been reported. Moreover, there remain two critical issues for the LSS phase transfer method, (1) low yield, and (2) generation of liquid and/or organic chemical wastes, such as spent solvents containing oleic acid and ethyl alcohol.

In this study, we report a modified LSS phase transfer method for the preparation of single-phase Gd2Zr2O7 nanoparticles, in which we successfully achieved high yield with minimized generation of chemical waste. Additionally, the mono-dispersed Gd2Zr2O7 nanoparticles obtained have a very small average particle size of 1.7 nm. This economical- and environmental-friendly method has promising potential to be used in industrial productions and has great potential to be applied in thermal barrier coatings (TBCs), solid oxide fuel cells (SOFCs) and nuclear waste immobilizations.

2. Experimental methods

The solid starting materials include Gd(NO3)3·6H2O (> 99.99%, Ruike RE, China), Zr(NO3)4·5H2O (> 99.9%, Chengdu Kelong, China) and sodium oleate (Aladdin). Oleic acid (> 98.0%, Chengdu Kelong, China) and ethyl alcohol were used as solvents. Additionally, ammonium hydroxide aqueous solution (25.0–28.0 %, Chengdu Kelong, China) was added to form surfactant oleylamine to assist the precipitation of Gd3+ and Zr4+.

Specifically, 2.178 g of Gd(NO3)3·6H2O and 2.071 g of Zr(NO3)4·5H2O were dissolved in deionized water (50 ml) in a 200 ml teflon autoclave forming a transparent solution. Subsequently, ethyl alcohol (50 ml), oleic acid (20 ml), sodium oleate (4 g) and ammonium hydroxide (10 ml) were sequentially introduced to the transparent solution, which was transferred to a furnace for hydrothermal reaction at 200 °C for 24 h. The concentrated precipitate at the bottom of teflon autoclave was then collected by centrifuging the supernatant liquid. Then, the precipitate was centrifuged and washed by deionized water followed by ethyl alcohol for multiple times to maximize removal of any residual ionic species, such as nitrate and sodium ions. Ultimately, the cleaned product was calcined at elevated temperatures (300, 400, 500, 600 and 700 °C) for 3 h to obtain Gd2Zr2O7 nanoparticles.

Fourier transform infrared (FTIR) spectra of the precursor powders were recorded using a TENSOR 27 spectrometer (BRUKER, Germany). The thermogravimetry and differential scanning calorimetry (TG-DSC) analysis of precursor powders was examined using a Netzsch Instrument STA 449 F5 Jupiter system. The TG-DSC experiment was carried out under an air atmosphere from 30 to 1000 °C with a heating rate of 10.0 °C/min. The phase evolutions of the precursor powders were studied using temperature programmed X-ray diffraction (DX-2700, Dandong Fangyuan, Dandong, Liaoning, China) equipped with a Ni filtered Cu Ka radiation (λ = 1.5406 Å). In the XRD analysis we used a step size of 0.03° in the 20 range from 10 to 70°. The crystal sizes of all samples were calculated using Scherrer’s formula with four crystal planes, (111), (200), (220) and (311). The morphologies of all samples were revealed by transmission electron microscopy (TEM, Tecnai G2 F20 S-TWIN).

3. Results and discussion

The precursor and its calcined products at different temperatures were characterized by FTIR spectra and TG-DSC to reveal the chemical and thermal evolutions during heating, respectively. The FTIR spectra of the precursor and its calcined products at different temperatures are shown in Fig. 1a. The bands at 1452 and 1568 cm⁻¹ are attributed to the skeletal vibration of C–C. In addition, the two bands at 2856 and 2925 cm⁻¹ are due to the stretching vibration of C–H bond. The observation of C–C and C–H confirms the presence of oleic acid, which enwraps the nanoparticle surface and acting as a surfactant capping ligand [17]. Apparently, as temperature increases, the bands about C–H disappeared completely and the bands about C–C decreases. This demonstrates that oleic acid would be removed at higher temperature and a bit of carbon still exists in the sample. The residual carbon will prevent particle from agglomeration [21]. Absorption bands observed at 3429 to 3431 cm⁻¹ are attributed to the stretching vibration of intermolecular hydrogen bonds, which will cause weaker agglomerates [22]. The hydrogen bond forming molecules can be removed during the multiple washing process under centrifuge using ethyl alcohol. Additionally, the characteristic absorption bands at 491 and 493 cm⁻¹ are assigned to Zr–O vibrations. The bands observed at 540 cm⁻¹ corresponds to Gd–O vibrations, which indicates the formation of metal-oxygen bond below 200 °C.

The TG-DSC and DTG profiles of the precursor are presented in Fig. 1b. Heating in air results in a total mass loss of ~65%. Stepwise weight loss is observed. Specifically, from room temperature to ~350 °C, the sample weight loses 25% due to dehydration and desorption of small organics, resulting in a broad endothermic heat effect. Subsequently, from 350 to 458 °C, larger organics, primarily residual sodium oleate and oleylamine, gradually decompose, followed by gradual weight loss to ~45% and weak endothermic heat effect. After 458 °C further decomposition of residual hydrocarbons in air through combustion is observed, evidenced by the sharp exothermic DSC peak center at 511 °C [23]. The DTG curve suggests the same phenomenon. There appears to be no significant weight loss and exothermic peak at temperature higher than 600 °C. This suggests the completion of organics decomposition and full crystallization of Gd2Zr2O7.

The XRD patterns of the precursor and its calcined products at different temperatures are shown in Fig. 2a. The XRD patterns of the precursor powders below 400 °C are in good agreement with the characteristic diffraction peaks of Gd2O3 and ZrO2 mixture. This is consistent with the Zr–O and Gd–O bonds observed in FTIR spectra. As the temperature increases to 400 °C, the XRD peak of Gd2O3 disappears, suggesting the formation of Gd2Zr2O7 phase at 400 °C. Further temperature increase leads to sharper Gd2Zr2O7 XRD. At 700 °C, well crystallized calcined product with a single defect fluorite phase of Gd2Zr2O7 (PDF#80-0471) is obtained. In Fig. 2b, the crystallite size calculated by Scherrer’s formula is plotted as a function of calcination temperature. Specifically, it is shown that the average grain size of the Gd2Zr2O7 nanocrystalline powders calcined at 400 °C is as small as 1.7 nm. Even after calcination at 700 °C, the average crystallite size remains 4.4 nm. The XRD followed by size analysis strongly suggest that our modified LSS method is effective for successful synthesis of single-phase Gd2Zr2O7 nanoparticles with ultrafine crystallite size.

After hydrothermal synthesis at 200 °C for 24 h, we dispersed the concentrated precipitate at the bottom of the teflon autoclave in cyclohexane forming a transparent mixture. The TEM image of this transparent mixture is shown in Fig. 3a, which presents monodispersed spherical-shaped nanoparticles with a diameter less than 5 nm. The morphology of Gd2Zr2O7 nanoparticles calcined at 700 °C is presented in Fig. 3b, which also shows well-dispersed Gd2Zr2O7 nanoparticles without severe aggregation. The average particle size of the calcined Gd2Zr2O7 nanoparticles is approximately 5 nm. The dispersity slightly decreases as the calcination temperature increases, which is owing to the coalescing of adjacent particles at higher temperature [24].

Moreover, in our study we also find that the supernatant solution collected after hydrothermal synthesis, containing oleic acid, ethyl alcohol, sodium oleate and oleamide, can be recycled and reused to prepare Gd2Zr2O7 nanoparticles of the same quality. The comparison of XRD patterns of Gd2Zr2O7 nanoparticles synthesized by initial solvent and recycled supernatant solution is shown in Fig. 4, which exhibits no difference. This highlights that the modified LSS approach is an...
economical- and environmental-friendly process, which can be used for production of a large quantity of Gd$_2$Zr$_2$O$_7$ materials. Furthermore, very impressively, compared with previously reported yield of 75.4% [25], we increases the yield of Gd$_2$Zr$_2$O$_7$ synthesis to 89%, just as shown in Table 1.

4. Conclusions

In this work, we synthesized monodispersed Gd$_2$Zr$_2$O$_7$ nanoparticles using a modified LSS phase transfer method, in which oleic acid and oleamide were employed as capping ligands to control the size of Gd$_2$Zr$_2$O$_7$ nanoparticles. According to the XRD results, the average particle size of Gd$_2$Zr$_2$O$_7$ is as small as 1.7 nm. This modified LSS phase transfer method enables a straightforward and eco-friendly approach for the synthesis of Gd$_2$Zr$_2$O$_7$ nanoparticles.
for mass-production of nanosized oxide materials with high yield and minimized chemical wastes.

Acknowledgement

This work was supported by the National Natural Science Foundation of China under Grant No. 11775152, the Science and Technology Innovation Team of Sichuan province under Grant NO.15CXTD0025, and the Key Applied Basic Research of Sichuan province under Grant NO. 2017JYQ0329. Di Wu acknowledges the institutional funds from the Alexandra Navrotsky Institute for Experimental Thermodynamics and Gene and Linda Voiland School of Chemical Engineering and Bioengineering at Washington State University.

References

[18] F. Huang, D. Chen, J. Zhou, Y. Wang, Modifying the phase and controlling the size of monodisperse Gd2O3 nanocrystals by employing Ge2O6 as a nucleating agent, CrystEngComm 13 (2011) 4500.

