Interplay of Confinement and Surface Energetics in the Interaction of Water with a Metal–Organic Framework

Di Wu, † Xiaofeng Guo, †‡ Hui Sun, ‡ and Alexandra Navrotsky* †‡

 extravasation presence of H2O in laboratory and industrial settings.

MOFs with water is especially important because of their high

sorption and separation,§ promising for applications in heterogeneous catalysis, 6 gas

Metal–organic frameworks (MOFs) are a unique class of crystalline nanoporous hybrid materials that can be synthesized through the assembly of metal ions and organic linkers under solvothermal/hydrothermal conditions. 1–3 Owing to their extremely open nanoporosity, large accessible surface areas, and chemically editable hybrid architectures, MOFs are very promising for applications in heterogeneous catalysis, 6 gas sorption and separation, 7–11 energy storage, 2,12 drug delivery, 13 and molecular/electronic sensing. 14 HKUST-1, one of the most widely investigated MOF structures, is constructed by Cu paddle-wheel secondary building units (SBUs) that are directly coordinated by benzene-1,3,5-tricarboxylic acid (BTC) linkers. 15 The complex three-dimensional structure of HKUST-1 involves three different interconnected pores/cages (4, 10, and 11 Å; see Figure 1A). 15 The small cages (4 Å) are located at the corners of medium and large pores. However, their apertures open only into the 11-Å pores. The medium and large pores are arranged alternately and open into each other. The exposed Cu coordination sites can be accessed only in the 11-Å cages, making the pore surface hydrophilic. 16 Although HKUST-1 has been commercialized by BASF as Basolite C 300, 17–19 the understanding of confinement of small molecules with freshly activated HKUST-1 is still largely empirical. The interaction of MOFs with water is especially important because of their high surface areas, their frequent degradation by moisture, and the pervasive presence of H2O in laboratory and industrial settings. Hence, it is essential to perform a thorough fundamental investigation of the energetics of water–MOF systems to reveal the underlying interactions and competition among different bonding factors.

Herein, we report a direct gas adsorption calorimetric study using water as a probe molecule to elucidate guest–host interaction details in HKUST-1, which features two distinct types of surfaces (hydrophobic and hydrophilic) and three different sizes of pores/cages. 15 The adsorption calorimetry apparatus (Figure 1B) developed in our laboratory consists of a Calvet-type microcalorimeter coupled with a commercial gas adsorption analyzer to enable precise control of vapor dosing and accurate detection of heat associated with each small dose of gas. 20 Previously, we employed this system mainly to investigate the surface energy of inorganic oxide nanoparticles. 21–24 Recently, we applied this method to study CO2 capture and CH4 storage on various MOFs, 25–27 demonstrating that direct gas adsorption calorimetry has great advantages for evaluating gas–MOF interactions at low pressure, which exhibit strong exothermic heat effects at zero coverage (step initial isotherms) and multistrength adsorption events (stepwise differential enthalpy curves) at various operating temperatures. In the present study, for the first time, we applied biprobe (water and ethanol) adsorption calorimetry to HKUST-1 along with mathematical analysis of the isotherm to determine the

© 2016 American Chemical Society

Received: December 14, 2015
Revised: March 23, 2016
Published: March 24, 2016

DOI: 10.1021/acs.jpcc.5b12239
enthalpy of adsorption as a function of water loading from zero coverage to water saturation, to identify different strengths of interactions at various positions (cages and sites), to separate interactions with similar magnitudes, and to interpret the binding mechanisms with an emphasis on the interplay and competition of confinement effects and surface adsorption.

EXPERIMENTAL METHODS

The source and characterization of the HKUST-1 used in this work (X-ray diffraction patterns, nitrogen adsorption–desorption isotherms, and thermal analysis) were published elsewhere. Synchrotron X-ray scattering was performed at the B1 station of the Cornell High Energy Synchrotron Source (CHESS) using an angle-dispersive geometry. Activated HKUST-1 was placed into a chamber (200 μm in diameter and 100 μm in thickness) that was set on the flat surface of a transparent diamond window. The white X-rays were collimated into a monochromatic beam (0.485946 Å) by a double-crystal monochromator. A large MAR345 image plate detector was employed to collect the scattering signals. The obtained two-dimensional image was integrated into one-dimensional patterns as a function of 2θ (degrees) for structural analysis using Fit2D software.

The enthalpies of water sorption were determined directly by gas adsorption calorimetry at 25 °C as described by Ushakov and Navrotsky. The apparatus (Figure 1B) includes a Calvet-type microcalorimeter (Setaram SenSYS) coupled to a commercial adsorption analyzer (Micromeritics ASAP 2020). HKUST-1 crystals (~50 mg) were loaded into one side of a custom-made silica glass forked tube, the other side of which remained empty as a reference. This tube was introduced into the twin chambers of the calorimeter and attached to the gas-adsorption analyzer for degassing and further analyses. Prior to each analysis, the sample was evacuated (<10−3 Pa) for 24 h at 180 °C to avoid insufficient activation. The ASAP 2020 instrument was programmed to operate in incremental dosing mode with 1 μmol per dose and 1.0–1.5 h equilibration periods. The amount of gas adsorbed from each dose was recorded by the gas adsorption analyzer, and the associated heat effect was detected simultaneously by the microcalorimeter. Processing software (AKTS, Switzerland) was employed to extract enthalpies of adsorption (kilojoules per mole of molecules). Ethanol (pure, anhydrous alcohol, Fluka) adsorption calorimetry (1 μmol per dose and 1.0–1.5 h equilibration periods) was also designed and performed using the same instrument to assist the interpretation of the water–HKUST-1 interactions.

RESULTS

The synchrotron X-ray scattering pattern of activated HKUST-1 is presented in Figure 1C, which confirms its structure and phase purity. The adsorption isotherm and associated

![Figure 1](https://example.com/figure1.png)

Figure 1. (A) Illustration of the HKUST-1 structure in a two-dimensional view along the (100) direction. Spherical shapes represent the small pores (4 Å, green), medium pores (10 Å, yellow), and large pores (11 Å, red). (B) Schematic of the experimental setup for water adsorption calorimetry on HKUST-1. (C) X-ray scattering pattern of activated HKUST-1.

![Figure 2](https://example.com/figure2.png)

Figure 2. (A) Water adsorption isotherm, (B) differential enthalpy of adsorption curve, (C) partial molar free energy (chemical potential) of adsorption curve, and (D) differential entropy of adsorption curve for water adsorption on HKUST-1 at 25 °C.
differential enthalpy of adsorption (Δh) curve are presented in panels A and B, respectively, of Figure 2. The Δh values are also listed in Table 1. For water adsorption on freshly activated HKUST-1, the most exothermic differential enthalpy of adsorption is -119.4 ± 0.5 kJ/(mol of water). This finding complements simulation results29,30 and solution calorimetric data28 by providing enthalpies at zero coverage, which cannot be accurately measured by other methods. As the water loading is increased, the differential enthalpy of adsorption changes sharply to a less exothermic plateau of -50.2 ± 1.8 kJ/(mol of water) between 2.7 and 17.8 mmol/g. This is an indication of chemisorption into a site or set of sites of constant or almost constant average energy. Beyond 17.8 mmol/g, the enthalpy of adsorption becomes less exothermic, gradually ramping up to the second plateau at -15.2 ± 2.3 kJ/(mol of water) at 29.9 mmol/g. This weak physisorption, which has not been described in previous investigations, is much less exothermic than that of water condensation $[-44.0 \text{ kJ}/(\text{mol of water})]$. The degree of hydrophobicity is comparable to what was observed for the dehydroxylated silica surface.23

The partial molar free energy (chemical potential, $\Delta\mu$) of water adsorption directly derived from the isotherm is presented in Figure 2C. It becomes less exothermic as the reaction proceeds. Combining the differential enthalpy of adsorption with the partial molar free energy, one obtains the partial molar entropy (Δs) of water adsorption using the relation $\Delta\mu = \Delta h - T\Delta s$ (Figure 2D). Δs becomes less negative as more water is adsorbed. Hence, all partial molar properties indicate a fading overall driving force for the reaction as the water coverage or partial pressure increases. Although a diminishing strength of adsorption with increasing coverage is typical, the two plateaus suggest complexity not generally seen in inorganic frameworks.

DISCUSSION

HKUST-1 has three types of cages, one relatively hydrophilic (11 Å) with Cu coordinating sites and two smaller pores (4 and 10 Å) that are entirely hydrophobic. The polarity of water molecules increases the complexity of interactions. The differential adsorption enthalpy curve shows clear evidence of multistage interactions as a function of water loading: The strongest affinity is at zero coverage, followed by intermediate moderate adsorption and finally by weak gradually decreasing interaction.

An initial sharply rising isotherm associated with strong exothermic heat effects is usually seen when the sorbent features microporosity leading to capillary condensation or strong chemisorption sites binding the adsorbate tightly.19 It is possible that the microporosity might dictate the competitive binding of water between micropores and unsaturated metal sites in MOFs. Considering the structure and metal site distribution of HKUST-1, the 4 Å cage or the open Cu site at the 11 Å pore could be responsible for the initial strong water uptake. The 4 Å cage provides tight three-dimensional confinement for an adsorbate molecule, whereas the Cu site in the larger pore offers two-dimensional binding at the pore wall. Theoretical simulations have predicted the magnitude of water adsorption on the unsaturated Cu sites of HKUST-1, suggesting that the binding energy falls into a very narrow range from -47 to -50 kJ/(mol of water),29,30 in excellent agreement with our observed value of -50.2 kJ/(mol of water). Thus, the series of adsorption events with intermediate strength between approximately 1.5 and 10.5 water molecules per Cu$\text{Cu}_3(btc)_2$ molecule (see Figure 3) is very likely to represent the coordination of water molecules onto Cu sites and subsequent pore filling. On the other hand, it is also possible that the most exothermic interaction [0 to roughly 1.5 water molecules per Cu$\text{Cu}_3(btc)_2$] might originate from the confinement of water in the smallest micropores (4 Å). Nevertheless, without further experimental evidence, such an assignment appears to be arbitrary. In the present study, two analytical methodologies were developed and coupled to distinguish these intricate interactions.

To further elucidate the origin of the strong initial interactions, we performed ethanol adsorption calorimetry experiments. We employed ethanol as a probe molecule for two reasons. First, with a kinetic diameter of 4.4 Å, ethanol is just large enough to be excluded by the aperture of the 4 Å cage. Thus, it can interact only with the Cu sites. Furthermore, in the HKUST-1 structure, the ethanol–Cu coordination reaction has a 1:1 stoichiometry, exhibiting no multilayer formation.16 As a simple polar organic chain, ethanol features a hydroxyl head and a hydrophobic $-\text{CH}_2-\text{CH}_3$ tail. It can bind with the Cu node, a Lewis acid site, through hydrogen bonding, leaving a much less reactive outward facing $-\text{CH}_3$ group. Hupp and co-workers demonstrated that ethanol coordinated to Cu site on HKUST-1 is a poor proton conductor.16 In other words, the bonded ethanol tends not to form further hydrogen bonds with subsequently introduced free ethanol molecules. A similar phenomenon was observed in our recent study on ethanol–nanocalcite interactions, in which we found that, once an ethanol monolayer is strongly bonded to the nanoparticle surface through its hydroxyl groups, the hydrophobic ends of the adsorbed ethanol interact only very weakly with the second layer of ethanol, resulting in a low-density spatial gap.24 Figure 3 presents the differential enthalpy of ethanol adsorption on fresh, activated HKUST-1 as a function of the number of moles of molecules adsorbed per mole of Cu$\text{Cu}_3(btc)_2$.

![Figure 3](image3.png)
The strongest adsorption sites usually bind the sequential desorption and/or multistage decomposition derivative thermogravimetric (DTG) analysis, which is typically adsorption isotherm. This methodology is inspired by water), we took the from 0 to 3 ethanol molecules per Cu$_3$(btc)$_2$, the ethanol condensation. To distinguish these events with similar reaction energetics [centered at ± 73.6 kJ/(mol of ethanol)]. This might suggest that the accessibility (effective diameter) of the large pore decreases upon ethanol coordination, leading to increased overall confinement effects. Hence, with combined evidence from water and ethanol adsorption calorimetry, we are able to reveal a potentially sequential filling of water, first into the 4 Å cage, then onto the Cu node, followed by subsequent weak adsorption of water molecules.

Unlike ethanol, coordinated water on Cu makes a good proton donor, which generates a series of water−water clustering events, as described by Hupp and co-workers. The adsorption behavior of water in the 11-Å pore itself is a complex process involving multiple stages, namely, water−Cu coordination, coordinated water−free water binding, and free water condensation. To distinguish these events with similar reaction energetics [centered at ± 50.2 kJ/(mol of water)], we took the first derivative (slope) of the water adsorption isotherm. This methodology is inspired by derivative thermogravimetric (DTG) analysis, which is typically applied to interpret weight loss on heating to separate sequential desorption and/or multistage decomposition steps. The strongest adsorption sites usually bind the adsorbate molecules first during adsorption but release them last during desorption. The water adsorption isotherm, differential enthalpies, and calculated slope curve are plotted in Figure 4. The initial slope of the water adsorption curve is nearly infinite but decreases sharply as the partial pressure of water increases. Subsequently, for $0.02 < P/P_o < 0.22$ [between 1.5 and 10.5 water molecules per Cu$_3$(btc)$_2$], three well-resolved peaks in slope are observed. These peaks are in excellent agreement with the range of the first plateau of the enthalpy profile, suggesting separated water−Cu coordination and subsequent pore filling up to three water molecules per Cu atom (see Figure 4). Subsequently, the slope becomes constant beyond $P/P_o = 0.22$ (see Figure 5 for the full P/P_o range), corresponding to unfavorable water filling (weak interactions) of the residual space with hydrophobic surfaces. It increases sharply as the remaining pores/cages fill as a result of water condensation. The portion before these three peaks on the slope curve ($P/P_o < 0.02$) corresponds to abrupt water molecule uptake (condensation by the 4-Å cages).

On the other hand, if there is no further binding beyond the direct guest molecule−site coordination, there would merely be one peak in the slope curve. Examples of such behavior include ethanol coordination on HKUST-1 and CO$_2$ adsorption on mmen-Mg$_2$dobpdc25 [mmen $= N,N'$-dimethylethylenediamine, dobpdc$^{25} = 4,4'$-dioxide-3,3'$-biphenyldicarboxylate; Figure S1]. Therefore, our work also suggests that, although the coordinated and confined water molecules in the 11-Å pores of HKUST-1 are very similar in energetic states, the observed triple-peak slope profile (Figure 5) might indicate the potential

Figure 4. Isotherm (green), associated differential enthalpy of adsorption profile (red), and calculated slope curve (blue open circles with pink trace) of the water adsorption isotherm at 25 °C as a function of the partial pressure of water. The width of the curve (standard deviation of the slope at a particular value of P/P_o) represents the experimental uncertainty of four reproducible runs.

Figure 5. Calculated slope curve of the water adsorption isotherm as a function of partial pressure (P/P_o) at 25 °C. The width of the error bars on the slope curve (standard deviation of the slope at a particular value of P/P_o) represents the experimental uncertainty of four reproducible runs.
existence of an “onion-like” water configuration with enhanced short-range order, similar to the liquid/solvent restructuring induced by nanoparticle surfaces elucidated by X-ray pair distribution function analysis and calorimetry.

CONCLUSIONS

In summary, the water–HKUST-1 system has provided a comprehensive model illustrating guest–host interactions in complex hybrid nanoporous materials, in which the enthalpies of interaction/adsorption reflect the interplay and competition between pore structure (three-dimensional confinement from the framework) and surface properties (two-dimensional binding at the metal sites). Specifically, we have measured the enthalpy of water adsorption on HKUST-1, in which heats of adsorption of different strengths were seen, interactions at specific locations were mapped, and potential configurations of water molecules in different pores were suggested. This work demonstrates that the combination of water and ethanol adsorption calorimetry provides a direct and effective pathway to rationally characterize intricate hybrid porous materials containing multiple pore sizes and heterogeneous surfaces. In one such complex system, HKUST-1, three adsorption enthalpies with distinct magnitudes were documented. Moreover, we have developed a new methodology combining the enthalpy of adsorption curve and mathematical analysis of the isotherm to extract adsorption details and enable quantitative separation of a group of binding events having similar enthalpies. Such detailed information can help explain the fundamental principles of interactions at small molecule–MOF interfaces and assist in the design and development of potential applications.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jpcc.5b12239.

Calculated slope curve of small molecule–MOF adsorption isotherms (PDF)

AUTHOR INFORMATION

Corresponding Author

E-mail: anavrotsky@ucdavis.edu.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Grant DE-FG02-05ER15667. The Cornell High Energy Synchrotron Source is supported by National Science Foundation Award DMR-0936384. H.S. thanks the Natural Science Foundation of Shanghai for the financial support (No. 16ZR1408100). The authors thank Manas K. Bhunia and James T. Hughes for providing the MOF material. We also thank Zewei Quan for the synchrotron X-ray scattering analysis and invaluable discussions.

REFERENCES

