Full paper

Functionalized fullerenes for highly efficient lithium ion storage: Structure-property-performance correlation with energy implications

Changsheng Shan, Hung-Ju Yen, Kaifeng Wu, Qianglu Lin, Ming Zhou, Xiaofeng Guo, Di Wu, Hanguang Zhang, Gang Wu, Hsing-Lin Wang

Keywords:
Fullerene
Functionalization
Anode material
Lithium ion battery
Energy storage

Abstract

Here, we report that spherical C60 derivatives with well-defined molecular structures hold great promise to be advanced anode materials for lithium-ion batteries (LIBs). We studied four C60 molecules with various functional groups, including pristine, carboxyl, ester, and piperazine C60. The comparison of these C60s elucidated a strong correlation between functional group, overall packing (crystallinity), and the anode performance in LIBs. Specifically, carboxyl C60 and neutral ester C60 showed higher charge capacities than pristine C60, whereas positively-charged piperazine C60 exhibited lower capacity. The highest charge capacity was achieved on the carboxyl C60 (861 mAh g⁻¹ at 100th cycle), which is five times higher than that of pristine C60 (170 mAh g⁻¹), more than double the theoretical capacity of commercial graphite (372 mAh g⁻¹), and even higher than the theoretical capacity of graphene (744 mAh g⁻¹). Carboxyl C60 also showed a high capacity at a fast discharge-charge rate (370 mAh g⁻¹ at 5 C). The exceptional performance of carboxyl C60 can be attributed to multiple key factors. They include the complex formation between lithium ions and oxygen atoms on the carboxyl group, the improved lithium-binding capability of C60 cage due to electron donating from carboxylate groups, the electrostatic attraction between carboxylate groups and lithium ions, and the large lattice void space and high specific area due to carboxyl functionalization. This study indicates that, while maintaining the basic C60 electronic and geometric properties, functionalization with desired groups can achieve remarkably enhanced capacity and rate performance for lithium storage.

1. Introduction

Lithium-ion batteries (LIBs) have been considered as key candidates for energy storage and power supply for applications in portable electronic devices and electric vehicles [1–6]. In particular, the ever-increasing demand in electric vehicles has greatly promoted the research interests for developing advanced LIBs with high reversible capacity, excellent rate capability, and cycling stability [7–12]. Carbon-based anode materials have raised a great deal of interests due to their low-cost and light-weight (i.e. high energy density). However, graphite, the most commonly studied anode materials for LIBs has some drawbacks such as low theoretical specific capacity (372 mAh g⁻¹), lack of long term stability, and poor rate performance [13–16]. To this aim, many efforts have been devoted to developing anode materials, such as carbon allotropy, silicon, metal oxides, and organic compounds [17–28].

Among various anode materials, carbon-based LIBs have gained extensive attention because metallic lithium is replaced by a carbon host structure that can reversibly absorb and release lithium ions at low electrochemical potentials [29–31]. In addition, in contrast to their inorganic counterparts, carbon based materials have the advantages of low-cost, lightweight, and the ability to be functionalized with tunable electrical, electronic and redox properties. Improved cycling stability and capacity have been achieved by using nanoporous and heteroatom-doped carbon materials with various microstructures, such as graphene [32–34], graphene nanoribbons [35], carbon nanotubes [36,37],...
nanofibers [7,38], nanobeads [39], hollow nanospheres [40], porous carbon [41–43], carbon nanoparticles [44], porous carbon cloth [45], and their hybrids [46,47]. Despite all the advancements in optimizing the above carbon-based materials, their structural heterogeneity remains a challenge for lack of control over their structures at the molecular level. Thus, the underlying mechanisms responsible for those improvements have not been well established, which hinders a greater understanding between the structure and LIB properties of materials [48–50]. For example, reduced graphene oxides have ill-defined molecular structures with a lot of defects; therefore, it is not possible to establish structure–property relationships and raises a great concern over their performance reproducibility.

Notably, most of previously studied carbon materials for LIBs are layered structures, such as graphite and graphene, presumably allow for facile diffusion and incorporation of lithium ions. Unlike many layered-structured carbon materials, C60 has a precisely-defined zero-dimensional spherical structure. The C60 molecule is composed of a carbon cage with 20 hexagons and 12 pentagons on its surface [51,52]. The pure C60 and its derivatives can be synthesized with precisions down to the molecular level, and hence alleviate the aforementioned structural heterogeneity issue associated with many carbon materials. Since their discovery, C60-based fullerenes have been extensively studied primarily for biomedical applications [53,54] and for the electron transport layers in photovoltaic devices [55–57]. Chabre et al., first reported that C60 may be used for LIBs as they showed electrochemical intercalation of lithium into solid C60, suggesting that each C60 molecule can bind with 12 lithium to form C60Li12 corresponding to a capacity of 446 mAh/g [58]. In addition, the capacity of C60 molecule can be increased by hydrogenation of C60 at 1200 mAh/g [59]. However, it is very important to note that hydrogenated C60 does not have any electronic and/or optical properties of C60. It is simply a hydrocarbon with a caged structure. Lacking of experimental details and structural data of hydrogenated C60 from this report, it is simply not possible to draw meaningful conclusions on how C60 can be modified to render a much improved energy storage materials.

In recent years, C60 has been used as the additive to boost the charge capacity of reduced graphene oxide/graphite in LIBs because C60 can function as a spacer to increase inter-layer distances between graphene layers and to facilitate the incorporation of lithium ions [48]. In addition, C60-based polymers were mixed with silicon powders to increase the stability of silicon based LIBs [60]. However, there is no systematic study about the relationship between the functional groups and device performance in carbon-based LIBs. The structure-property correlation would be extremely helpful to provide insights for optimizing and exploring new materials for next generation LIBs.

In this work, we report for the first time a systematic study on spherical C60 and its derivatives with well-defined molecular structures as anode materials for LIBs. Four different C60 derivatives including pristine C60, ester C60, carboxyl C60, and positively-charged piperazine C60 were used as anode materials to study their performances in LIBs (Fig. 1a). The structures of these C60 and C60 derivatives were synthesized and characterized. Their molecular and hierarchical structures have been confirmed by nuclear magnetic resonance spectroscopy (NMR), transmission electron microscopy (TEM), UV-visible spectroscopy, and X-ray diffraction (XRD). The carboxyl C60 and ester C60 showed much higher lithium storage capacity than pristine C60 presumably due to the O=C-O functional groups, which not only provide the binding sites for lithium ions, but also change the electronic and crystalline structures, surface charge, and specific surface area of C60 to improve the capacity of C60 derivatives. In contrast, the highly-crystalline pristine C60 and positively-charged piperazine C60 have an adverse effect on the capacity. These strong correlations between functionalized groups in C60 and LIB performances suggest that C60 with desired functionality at the molecular level can achieve significantly enhanced lithium-ion storage capacity.

2. Material and methods

2.1. Chemicals and materials

Fullerene C60 (99%) was purchased from BuckyUSA company. Polyvinylidene fluoride (PVDF, fluoride content, 59%) was purchased from Scientific Polymer Products, Inc. Tetraethylammonium perchlorate (TBAClO4), electrolyte (1 M LiPF6 in 1:1 (v/v) mixture of ethylene carbonate/dimethyl carbonate (EC/DMC) solution) for coin cell battery test, and other solvents were all purchased from Sigma–Aldrich and used as received if not specified. The materials for battery test including carbon coated copper foil, conductive acetylene black, and coin cell cases were purchased from MTI corporation.

2.2. Characterization

13C NMR spectra were measured on a Bruker AC-400 MHz spectrometer in the indicated solvent, using tetramethylsilane as an internal reference. UV–vis–NIR measurements for C60 and C60 derivatives in tetrahydrofuran (THF) solution were collected with a Varian Cary 5000 spectrometer. X-ray diffraction (XRD) patterns of the samples were conducted on a Rigaku Ultima III X-ray diffractometer using fine-line-sealed Cu Ka tube (λ = 1.54178 Å) X-rays. The transmission electron microscopy (TEM) was examined by using a JOEL JEM-1230 transmission electron microscope. The Brunauer-Emmett-Teller (BET) surface area of each sample was measured at −196 °C by using a Micromeritics ASAP 2020 instrument and samples were degassed at 100 °C to remove any adsorbates prior to any experiments. Cyclic
voltammetry measurements were performed using a N2-filled three-electrode cell with a platinum wire as the auxiliary electrode and an Ag/AgCl wire as reference in a CHI 760e electrochemical workstation. The solvent, acetonitrile, was distilled before use. The concentrations of pristine C60 and C60 derivatives were 0.3 mg/mL. Working electrode was glassy carbon electrodes (d = 3 mm). Before use, glassy carbon electrode was carefully polished to a mirror finish with 1.0, 0.3, and 0.05 μm alumina slurries, successively.

2.3. Synthesis of C60 derivatives

C60[(CH3)(CO2-t-Bu)]6 (ester C60) [61], (C60)[C(CO2H)2]6 (carboxyl C60) [62], and C60(N-methylpiperazine)4 [63] were synthesized according to the previously reported procedure.

2.3.1. C60[(CH3)(CO2-t-Bu)]6 (ester C60)

Synthesis of ester C60 was made by the treatment of deoxygenated C60 solution in toluene-THF with sodium naphthalenide (10 equiv) for 2 h at ambient temperature. Before the blackish suspension was added excess amount of di-t-tert-butyl 2-bromo-2-methylmalonate, and it was allowed to react for an additional 12 h at ambient temperature. After workup and separation of the solids by precipitation cycles, the products were then purified by repetitive chromatography to afford ester C60 with roughly 30% yield. 13C NMR (100 MHz, CDCl3): δ 168.84, 156.35, 152.37, 146.38, 142.76, 131.01, 82.24, 61.44, 57.14, 28.07, 20.38.

2.3.2. C60[(CH3)(CO2Et)]6 (carboxyl C60)

Synthesis of C60[(CH3)(CO2Et)]6 was made by the treatment of deoxygenated C60 solution in toluene, 2 M H2SO4, water, and diethyl malonate (10 equiv) with excess amount of 1,8-diazabicyclo[5.4.0]undec-7-ene, and the reaction was allowed to react for an additional 12 h at ambient temperature. After workup and separation of the solids by precipitation cycles, the products were purified by repetitive chromatography using toluene-ethyl acetate as eluent to afford carboxyl C60 in a yield of 43%. Carboxyl C60 was then prepared by the hydrolysis of C60[(CH3)(CO2Et)]6 with excess amount of sodium hydride in a nitrogen atmosphere in dry toluene. The reaction mixture was quenched by methanol in air after heated with stirring at 60 °C for 3 h. After centrifugation and concentration, the precipitate was sequentially washed with toluene, 2 M H2SO4, water, and finally dried under vacuum at 60 °C for 12 h to afford the desired product carboxyl C60 in a yield of 62%. 13C NMR (100 MHz, acetonitrile-d3): δ 167.88, 141.44, 141.30, 69.36, 46.37.

2.3.3. C60(N-methylpiperazine)4

Fullerene C60 was dissolved in 1,2-dichlorobenzene for 2 h at ambient temperature. A solution of 1-methylpiperazine in 1,2-dichlorobenzene was then added in one portion to the fullerene solution. The resulting mixture was stirred in air under irradiation from the top by 60 W incandescent light bulb. The course of the reaction was monitored by thin layer chromatography (TLC) and stopped when conversion of C60 was complete. The reaction was then diluted by toluene (1:7 by volume) and poured into large amount of n-hexane to precipitate the unreacted fullerene. The resulting solution was filtered and purified by repetitive chromatography to afford orange product piperazine C60 in a yield of 85%. 13C NMR (100 MHz, CDCl3): δ 149.90-142.00 (fullerenic sp2 carbons), 55.99, 50.31, 46.17.

2.4. Fabrication of LIBs and LIB tests

The battery tests were performed with CR2025-type coin cells containing the C60 or C60 derivatives working electrode. The working electrodes were prepared by a slurry coating method with 60 wt% of sample, 30 wt% conductive acetylene black, and 10 wt% polyvinylidene fluoride (PVDF) binder dispersed in N-methyl-2-pyrrolidone (NMP). The mass of each C60 and C60 derivatives thin film electrode was precisely measured with a microbalance before coin cell assembly. Coin cells were assembled in an argon-filled glove box with a metallic lithium foil as the combined reference and counter electrodes. The moisture content and oxygen level in the glove box were maintained less than 1 ppm. The electrolyte was 1 M LiPF6 in a 1:1 (v/v) mixture of EC/DMC with Gelgard 2300 polypropylene as separator. The samples were galvanostatically charged and discharged at a constant current density of 0.1 C based on the weight of the pristine C60 or C60 derivative sample on a battery test system (Arbin 2000-BT) for galvanostatic charge–discharge cycling tests ranging from 0.02 to 3.0 V. Cyclic voltammetry measurements were carried out on an electrochemistry workstation (CHI 760E) over the potential range 0.02 – 3.0 V vs. Li/Li+ at a scan rate of 0.1 mV s–1.

2.5. Calculation of specific capacity of C60 and C60 derivatives

The specific capacity of C60 and C60 derivatives can be calculated by the following formula:

\[
c_{i}(\text{mA·h·g}^{-1}) = \frac{n \times F \times (C_{\text{mol}}^{-1})}{M_{w} \times (g \cdot \text{mol}^{-1})}\]

in the formula, C60, n, F, and Mw represents the theoretical specific capacity, the transferred electron number in each structural unit, the Faraday constant and the molecular weight of the structural unit, respectively. The molecular weights of C60, ester C60, carboxyl C60, and positive piperazine C60 are 720, 2094.84, 1332, 1176.48, respectively.

It was found that the number of lithium intercalated in one C60 could reach 12 by electrochemical studies [58]. Based on this, the calculated the capacity of C60 is 446 mAh g–1. For ester C60, 12 carboxyl group in ester C60 can bind 12 lithium ions and C60 can bind 12 lithium ions (Li12C60), so the calculated capacity of ester C60 is 307 mAh g–1. For carboxyl C60 anode, 12 of carboxyl group may bind 12 lithium ions [64], and the C60 core could complex 12 lithium ions [58]. So the total number of lithium ion storage could be 24 for one carboxyl C60 and the corresponding calculated capacity of lithium storage is 483 mAh g–1.

3. Results and discussion

3.1. Synthesis and structural characterization of functionalized C60δ

Ester C60 and carboxyl C60 were synthesized by following the literature procedures [61,62]. Briefly, ester C60 was made by treating deoxygenated C60 solution with sodium naphthalenide and excess amount of di-t-tert-butyl 2-bromo-2-methylmalonate. Carboxyl C60 was prepared by the hydrolysis of C60[(CH3)(CO2Et)]6, which was made by the treatment of C60 with 9,10-dimethylnanthracene, CBr4, diethyl vinylidene N-methyl-2-pyrrolidone.
malonate, and excess amount of 1,8-diazabicyclo-[5.4.0]undec-7-ene. Piperazine C60 was synthesized by reacting C60(N-methylpiperazine)4 with iodomethane, in which C60(N-methylpiperazine)4 was prepared by treating C60 with 1-methylpiperazine in 1,2-dichlorobenzene [63]. The molecular structures of these three C60 derivative were confirmed by 13C NMR spectroscopy (Fig. S1 – S3 in Supporting information).

The structures of four C60 and C60 derivatives are shown in Fig. 1b. Pristine C60 is molecule, without any functional group. Carboxyl C60 and ester C60 has 12 carboxyl and ester groups, respectively. Piperazine C60 has four positively-charged sites (ammonium salt) distributed on the northern hemisphere of the C60 (Fig. 1b) and hence is the only one with an asymmetric structure. Functionalization of C60 leads to modification of electronic structures and the optical images of the fullerene solutions reveal distinct colors (Fig. 1b), consistent with their corresponding UV–visible absorption spectra (see Fig. 2a) that will be elaborated later.

In Fig. 2a, pristine C60 has two prominent absorption peaks at 257 nm and 331 nm, which are typical for π - π* transitions in aromatic C60.
systems [65]. Ester C₆₀ has three obvious peaks at 250 nm, 358 nm and 853 nm. The 853 nm peak arises from the fully conjugated equatorial tranule structure [61,66]. Carboxyl C₆₀ has two shoulder bands around 331 nm and 313 nm, and strong absorption bands at 246 nm, 270 nm, and 279 nm [62]. The above spectra are in good agreement with those reported in previous literatures. As for piperazine C₆₀, it only shows one main absorption peak at 254 nm, presumably due to a highly asymmetric structure that disrupts the conjugation in the molecule.

The XRD was used for characterizing the crystalline structure of four different C₆₀₅ (Fig. 2b). Pristine C₆₀ shows very strong (111), (220), and (311) peaks associated with single crystalline C₆₀, consistent with the results reported previously [67]. In contrast, ester C₆₀ and carboxyl C₆₀ show significantly reduced crystalline structure, as manifested by the much weaker diffraction patterns as compared to pristine C₆₀. Notably, ester C₆₀ and carboxyl C₆₀ have relatively sharp peaks in smaller angles of 6.1° and 7.0°, respectively, due to increased inter-C₆₀ separation by the functional groups. The disruption of crystalline structure is particularly prominent in the case of piperazine C₆₀Due to its structural asymmetry, which inhibits crystalline packing at various length scales.

As a result, the XRD of piperazine C₆₀ reveals an amorphous structure with only two broad peaks centered around 7° and 18° (Fig. 2b).

The TEM images are consistent with XRD results. In Fig. 2c, the TEM image of pristine C₆₀ shows a perfect crystalline pattern with about 1.0 nm center-to-center distance between the molecules, consistent with the previous study [68]. The TEM image of ester C₆₀ (Fig. 2d) and carboxyl C₆₀ (Fig. 2e) only show some streaking patterns, which are consistent with the much weaker peaks in their corresponding XRD spectra. Piperazine C₆₀ shows no structural order in its TEM image (Fig. 2f), again consistent with the two broad peaks in its XRD spectrum.

Electrochemical cyclic voltammograms (CVs) and specific surface area measurements on C₆₀ and its derivatives (Fig. S4 and Table S1 in Supporting information) also revealed changes dominated by the nature and the regiochemistry of the functional groups. Such molecular-level tunable structural, electronic and electrochemical properties in these C₆₀ and C₆₀ derivatives are expected to significantly impact their performances in LIBs, as will be examined below.

3.2. Lithium ion storage performance of functionalized C₆₀₅

The C₆₀₅ were used as anode materials and assembled into a coin cell with lithium metal as counter and reference electrodes (see Materials and methods for details). Fig. 3 shows the discharge-charge curves (at current density of 0.1 C) and CVs of four different C₆₀₅-based LIBs for the initial three cycles. During discharging (intercalation of lithium ions) of pristine C₆₀, the voltage drops reveal several plateaus at 2.0–2.2 V, 1.7–1.9 V, and 1.5–1.7 V in Fig. 3a. The discharge and charge capacities in the first cycle are 653 and 163 mAh g⁻¹, respectively. The CV curve of pristine C₆₀ (Fig. 3b) has three main peaks at 2.05 V, 1.78 V and 1.54 V that matches well with the charge/discharge voltage profiles in Fig. 3a. Ester C₆₀ also shows the first discharge curve with several plateaus at 2.3–2.5 V, 2.1–2.3 V, 1.8–2.0 V, 1.5–1.7 V, 0.7–1.2 V (Fig. 3c) that again correspond well with its CV in Fig. 3d. The initial discharge and charge capacities of ester C₆₀ are 680 mAh g⁻¹ and 401 mAh g⁻¹, respectively, which are larger than those of pristine C₆₀ presumably due to the ester groups on C₆₀. Yet more prominent improvements were observed for carboxyl C₆₀ (Fig. 3e). The discharge and charge capacities of carboxyl C₆₀ for the first cycle are 1373 and 773 mAh g⁻¹, respectively, which are much higher than those of pristine C₆₀ and ester C₆₀. Interestingly, unlike the capacity improvements achieved for carboxyl and ester C₆₀, we observed a relatively low discharge capacity of 335 mAh g⁻¹ and charge capacity of 107 mAh g⁻¹ in the first cycle for piperazine C₆₀ (Fig. 3g), reflecting the counterproductive effect of positively-charged piperazine groups on the capacity performance of C₆₀ in LIBs.

Notably, all these C₆₀ and C₆₀ derivatives show large irrevers

3.3. Mechanisms for the structure-property-performance correlation

Here we propose the mechanisms responsible for the observed dependence of C₆₀ LIB performances on functional groups (Fig. 5). It was reported, through electrochemical studies, that the number of lithium intercalated in one C₆₀ molecule could reach 12, i.e., on average 5 carbon atoms per lithium (LiC₆₀); this number is higher than graphite (LiC₆₅) [58]. Based on this number, the calculated capacity of C₆₀ can be as high as 446 mAh g⁻¹ (see calculation method in Supporting information). This value is, however, much higher than the experimental value of 170 mAh g⁻¹ for pristine C₆₀ (Figs. 3 and 4). The large discrepancy likely results from the highly crystalline nature of C₆₀ with densely pack structure and small specific surface area (1.69 m² g⁻¹, Table S1 in Supporting information), which limits the diffusion and reversible intercalation of lithium ions in C₆₀.

By functionalizing C₆₀ with 12 ester groups or 12 carboxyl groups, the reversible capacity of ester C₆₀ and carboxyl C₆₀ can reach...
404 mAh g$^{-1}$ and 861 mAh g$^{-1}$, respectively. It was suggested that the incorporation of carboxylate and/or ester functional groups in anode materials can improve the LIB capacity due to a high binding energy between O=C-O functional groups and lithium ions\cite{27,64}. Taking this factor into consideration and adding up the lithium storage capacities of C$_{60}$ and carbonyl groups\cite{58}, the calculated capacities of ester C$_{60}$ and carboxyl C$_{60}$ are ~ 307 mAh g$^{-1}$ and 483 mAh g$^{-1}$, respectively. Both are lower than the corresponding experimental values. The higher capacity observed can be rationalized as below. Our recent experimental and theoretical studies on nanographene materials demonstrated that the charge capacity of nanographenes can be increased/decreased by functionalizing the nanographene with electron donating/withdrawing groups, respectively\cite{50}. Electron donating groups increase the electron density on nanographene flakes allowing stabilizing greater number of positively charged lithium ions. Thus, the electron-donating nature of ester groups and carboxylate groups have significantly increased the electron density of the C$_{60}$ thus allowing complex with greater number of lithium ions, i.e., promoting the intercalation of more lithium ions into the more electron-rich C$_{60}$ cage. Yet another factor, which contribute to the capacity increase, is the microstructural changes induced by the functional groups, including the less-crystalline structure (larger lattice void space, see Fig. 2) and larger specific surface area (Table S1) of ester and carboxyl C$_{60}$s than pristine C$_{60}$. To summarize, the ester and carboxylate groups can bind lithium ions,
donate electrons to the C₆₀ cage, and increase the lattice void space and specific surface area for lithium intercalation, all of which result in the high capacity of ester C₆₀ in LIBs.

Although the ester and carboxylate groups behave similarly in terms of inducing electronic and microstructural changes, the experimental capacity of carboxyl C₆₀ (861 mAh g⁻¹) is significantly higher than that of ester C₆₀ (404 mAh g⁻¹), the reason can be attributed to the neutral vs negatively-charged nature of ester and carboxylate groups, respectively. Very important to note that, the carboxylate C₆₀ layer has an overall negative charge which can facilitate the insertion of positively-charged lithium ions through electrostatic attraction. This result is also consistent with the lower capacity of piperazine C₆₀. Indeed, the low capacity of 83 mAh g⁻¹ observed for piperazine C₆₀ is resulting from the electrostatic repulsion force between the positively charged piperazine groups and lithium ions. We note that the electron-withdrawing nature of piperazine groups might be another reason for the low capacity. This comparison suggests that C₆₀ functionalized with carboxyl/carboxylate groups are promising materials for LIB anodes. In summary, our studies provide a proof-of-principle demonstration that the performance of LIB can be optimized through tailored synthesis of C₆₀ with functional group and hierarchical structure that can lead to establishment of structure-property correlation previously not accessible.

4. Conclusion

In summary, we have demonstrated, for the first time, C₆₀ and its derivatives with well-defined molecular structures as anode materials in LIBs. Four different C₆₀ derivatives including pristine, ester, carboxyl, and piperazine C₆₀ were thoroughly characterized by NMR, TEM, UV-visible spectroscopy, and XRD in terms of their structure and morphology. Then the relationship between the molecular structures and lithium ion storage properties was established to provide guidance to rational design of organic compound-based electrodes for LIBs. The carboxyl C₆₀ based LIBs showed the highest charge capacity of 861 mAh g⁻¹ after 100 charging-discharging cycles with nearly 100% columbic efficiency. This is significantly higher than those of pristine C₆₀ (170 mAh g⁻¹), ester C₆₀ (404 mAh g⁻¹), and piperazine C₆₀ (83 mAh g⁻¹), and is also superior than commercial graphite (theoretical capacity of 372 mAh g⁻¹) and graphene (theoretical capacity of 744 mAh g⁻¹). We discovered that C₆₀ derivatives can be a highly efficient LIB anode material. The results strongly suggest that superior exceptional performance of carboxyl C₆₀ links to a combination of several structural parameters. They include a complex formation between lithium ions and oxygen atoms on the carboxyl group i.e., strong Li binding sites provided by O–C=O. The improved lithium-binding capability of C₆₀ cage is also due to increased electron density resulting from electron donating nature of carboxylate groups. Furthermore, the electrostatic attraction between carboxylate groups and lithium ions, the large lattice void space, and high specific area have all contributed to the excellent LIB properties. Most importantly, the structure-property-performance relationship established in this work suggests that C₆₀ derivatives are very promising anode materials through a functionalization with desired substituents. Accurate controls of molecular structure, surface charge, crystalline packing, specific surface area, and electrochemical property impact the performance of lithium-ion storage. This work offers new insights and directions that tailoring synthesis of C₆₀ derivatives or any other organic compounds with optimal functional groups can lead to new types of highly efficient carbon-based materials for energy storage.

Acknowledgment

The authors would like to acknowledge financial support by the Laboratory Directed Research and Development (LDRD) program (G. Wu, and H.-L. Wang) at Los Alamos National Laboratory (LANL). H.-L. Wang also acknowledges the start-up fund from Southern University of Science and Technology, China. C. Shan thanks the Director's Fellowship at Los Alamos National Laboratory for supporting the synthesis of carbon materials and lithium-ion batteries fabrication. G. Wu also acknowledges the start-up fund from the University at Buffalo (SUNY) along with the National Science Foundation (CBET-1511528).

Appendix A. Supporting information

Supplementary data associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.nanoen.2017.08.033.
Fig. 5. Schematic mechanism for elucidating the relationship between functionalization and capacity of C60 and its derivatives in LIBs.

References
Changsheng Shan is a postdoctoral fellow at Los Alamos National Laboratory (LANL). He obtained his B.S. at Northeast Normal University at 2005 and Ph.D. at Changchun Institute of Applied Chemistry in 2011 followed by extensive postdoctoral trainings at City University of Hong Kong (2011–2012), University of Delaware (2012–2014), and Indiana University (2014–2016). He was trained in materials electrochemistry from his graduate education and his current research focuses on developing functional nanomaterials for electrochemical applications in energy storage and analysis.

Hungju Yen completed his Ph.D. degree with the 1st prize of PhD graduates from National Taiwan University in 2011. He joined Los Alamos National Laboratory as the J. Robert Oppenheimer Distinguished Postdoctoral Fellow. Dr. Yen's main research interest lies in the organic synthesis of electroactive polymers and functional nanographenes with tailored optical and electronic properties. He has published more than 65 peer-reviewed papers in highly impact and influential journals. He also has 6 invited review article, 3 book chapter, 8 patents, and 100 conference papers. Now, he has more than 2200 citations for his papers with h-index of 29.

Kaifeng Wu received his BS degree in Materials Physics from University of Science and Technology of China in 2010 and his PhD degree in Chemistry from Emory University in 2015. He is now a Professor in the State Key Laboratory of Molecular Reaction Dynamics at Dalian Institute of Chemical Physics, Chinese Academy of Sciences. His research interest is ultrafast spectroscopy and dynamics in energy related materials.

Qinglu Lin received his BS in Applied Chemistry from Shantou University in 2009, China; M.S. and Ph.D. in Chemical Engineering from New Mexico State University in 2010 and 2014, respectively. Qinglu conducted his Ph.D. thesis in the quantum dots group at Los Alamos National Laboratory and he then became a Postdoctoral Fellow in the same group. Qinglu's research activities focus on the synthesis, optical properties and device applications of core-shell quantum dots. He has authored 23 peer-reviewed journal publications in Nature Communications, ACS Nano, Nano Letters, Journal of American Chemical Societies, etc.

Ming Zhou received Ph.D degree from Changchun Institute of Applied Chemistry, Chinese Academy of Sciences in 2011. During 2011–2015, he did postdoctoral work at University of California, San Diego, Case Western Reserve University, University of Washington and Los Alamos National Laboratory (as a prestigious Director’s Postdoctoral Fellow), respectively. Then, he joined Department of Chemistry at Northeast Normal University as a Full Professor through the successful selection of Recruitment Program of Global Youth Experts launched by Chinese government. He has published more than 50 papers with over 3700 citations (H-index: 29). His research interests include nanomaterials for analysis and energy applications.

Hsing-Lin Wang received his BS from Chemistry Department, National Chung Hsing University, Ph.D. in Chemistry from University of South Florida in 1992. He then became a Postdoctoral Fellow at University of Pennsylvania from 1993–1995. He came to Los Alamos National Laboratory as a Postdoctoral Fellow at 1995 and became a scientist in 1998. In 2016, he joined Southern University of Science and Technology, Shenzhen China. Hsing-Lin Wang’s research activities mainly in organic synthesis, processing and applications of functional polymers, fullerene derivatives, and nanostructured materials. He has authored 2 book chapters, 170 peer-reviewed publications and 20 issued patents and 4 patents pending. He is the editor of two specific issues in “Polymers” and “Journal of Nanomaterials.