

IJNIVERSITY

Reprocessable Thermosetting Epoxy Derived from Bio-Based Lignin Feedstock

NARA Northwest Advanced Renewables Alliance

Lucas Brown, Cheng Hao, Tuan Liu, Junna Xin, Jinwen Zhang

PACCAR Environmental Technology Building, Washington State University, Pullman, WA 99163, United States

Abstract

Developing renewable bio-based thermosetting polymers that are repairable and recyclable will greatly advance the potential to satisfy sustainability demands. In this study, Kraft lignin, which is derived from wood, was used as a feedstock to prepare thermosetting polymers. First, Kraft lignin was chemically modified using an anhydride monomer to prepare our polycarboxylic acid (LPCA). This LPCA was then used as a curing agent to react with eugenol epoxy. We used the FT-IR, TGA, DSC, NMR, and optical microscope to determine the chemical, thermal, and self healing properties.

Advantages

- Fully Bio-Based
- High Tg
- Self Healing
- Reprocessability

Background Commercial Product

Resource **Bio-Based Product**

Bio-Based Resource

Bio-Based **Epoxy Resin**

Recyclable

Synthesis route

Fig. 1: Picture of kraft-lignin and modified lignin

Eu-diolefins

Bio Epoxy

Properties

Fig. 2: Solubility test in different solvent of (a) Kraftlignin and (b) modified lignin

Fig. 3: FT-IR Test for Kraft-lignin and Modified Lignin

Epoxy Resin Properties

Fig. 4: DSC – Transition **Glass Temperature for Cured Epoxy**

Fig. 5: TGA – Cured Epoxy

Transesterification

Epoxy Resin Properties

Fig. 6: Picture of Reprocessability of Cured Epoxy Resin

Fig. 7: Optical Microscope Image for Self Healing **Properties with Increasing Time**

Conclusion

- Developing method to obtain a bio-based epoxy resin derived from eugenol and lignin.
- Successfully characterized epoxy resin's properties showing high Tg, self healing, and reprocessability.

This work was supported by the National Institute of Food and Agriculture (NIFA), USDA Award Number: 2017-67032-26005.