Reprocessable Thermosetting Epoxy Derived from Bio-Based Lignin Feedstock

Lucas Brown, Cheng Hao, Tuan Liu, Junna Xin, Jinwen Zhang
PACCAR Environmental Technology Building, Washington State University, Pullman, WA 99163, United States

This work was supported by the National Institute of Food and Agriculture (NIFA), USDA Award Number: 2017-67032-26005.

Abstract
Developing renewable bio-based thermosetting polymers that are repairable and recyclable will greatly advance the potential to satisfy sustainability demands. In this study, Kraft lignin, which is derived from wood, was used as a feedstock to prepare thermosetting polymers. First, Kraft lignin was chemically modified using an anhydride monomer to prepare our polycarboxylic acid (LPCA). This LPCA was then used as a curing agent to react with eugenol epoxy. We used the FT-IR, TGA, DSC, NMR, and optical microscope to determine the chemical, thermal, and self-healing properties.

Properties

Epoxy Resin Properties

Fig. 2: Solubility test in different solvent of (a) Kraft-lignin and (b) modified lignin

Fig. 3: FT-IR Test for Kraft-lignin and Modified Lignin

Transesterification

Synthesis route

Fig. 1: Picture of kraft-lignin and modified lignin

Background

Commercial Product

Petrol-Based Resource → Thermosets → Waste

Bio-Based Product

Bio-Based Resource → Bio-Based Epoxy Resin → Recyclable

Advantages

- Fully Bio-Based
- Self Healing
- High Tg
- Reprocessability

Conclusion

• Developing method to obtain a bio-based epoxy resin derived from eugenol and lignin.
• Successfully characterized epoxy resin’s properties showing high Tg, self healing, and reprocessability.

Fig. 4: DSC – Transition Glass Temperature for Cured Epoxy

Fig. 5: TGA – Cured Epoxy

Fig. 6: Picture of Reprocessability of Cured Epoxy Resin

Fig. 7: Optical Microscope Image for Self Healing Properties with Increasing Time