Preliminary Investigation of Waste Cooking Oil-Based Bio-asphalt and Reinforcement with Lignin-Based Epoxy

Alexa Antalan¹, Ran Li², Junna Xin², Jinwen Zhang²

1. Seattle Central College, 2. Washington State University

Introduction

This research optimizes the production of Kraft lignin (KL)-based epoxy and waste cooking oil (WCO)-based bio-asphalt to achieve a comparable alternative to the commercial asphalt.

Methods and Materials

Synthesis of Bio-asphalt:

Waste cooking oil (0.2 wt % iodine, 24 wt % Maleic anhydride) → Bio-asphalt

Synthesis of KL based epoxy monomer:

Kraft lignin → Glycidation

KL-epoxy

Reinforcement of bio-asphalt with KL-epoxy:

KL-epoxy + Bio-asphalt → KL-epoxy modified bio-asphalt

Characterization of Rutting Resistance & Viscoelasticity

- Studies performed using Parallel Plate geometry:
 1. Effect of reaction time of Bio-Asphalt: 12 hours vs 24 hours
 2. Effect of KL-epoxy contents: 2.5%, 5%, 7.5% or 10% by weight

Results

Table 1: The molar ratios of each reagent for the glycidylation reaction of KL were as follows:

<table>
<thead>
<tr>
<th>Hydroxyls of KL</th>
<th>Epichlorohydrin</th>
<th>NaOH</th>
</tr>
</thead>
<tbody>
<tr>
<td>KL-epoxy-1</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>KL-epoxy-2</td>
<td>1</td>
<td>30</td>
</tr>
<tr>
<td>KL-epoxy-3</td>
<td>1</td>
<td>30</td>
</tr>
</tbody>
</table>

Figure 1: FTIR spectra of KL and different KL-based epoxies.

- Production of epoxy rings
- Decrease of hydroxyl groups
- KL-epoxy-3: highest production of epoxy groups

Figure 2: ³¹P NMR spectra for KL and KL-based epoxy

Figure 3: Rheological properties of neat asphalt, neat bio-asphalt and KL-epoxy modified bio-asphalt samples

Figure 4: Rheological properties of neat asphalt, neat bio-asphalt and KL-epoxy modified bio-asphalt samples

The temperature at which G*/sin(δ) = 1 KPa is the maximum temperature for effective asphalt performance.

Conclusion

- Addition of KL-epoxy has improved the high temperature performance and viscoelasticity of the bio-asphalt.
- The properties increased with the increase of the KL-epoxy contents.
- By varying the KL-epoxy content, rheological properties of the modified bio-asphalt can be greatly regulated.

Acknowledgements

This work was supported by the National Institute of Food and Agriculture (NIFA), USDA Award Number: 2017-67032-26005.