
Solution to Potential and E-Field of Charged Disk ALONG Symmetry Axis

Problem:  Consider a disk of radius R with a uniform charge density σ.  Find the Electric Field 
due to this charge distribution on the axis of symmetry  (z axis) for both z > 0 and z < 0.  Denote 
the distance along the z axis from the center of the disk (O) to the point P (on the z axis) by z.

A couple of reminders:

1.   (* This is a comment *) 

and 

2.  If you get some weird results at some point, try going back and re-executing all the previous cells to reset your func-
tions and variables.

(a) Start by finding a differential of electric potential dVring[z] (dVring as a function of z) at the point 
P due to a ring of charge of a radius between r and r + dr.  Then integrate over r to find Vdisk[z].   



First, the potential of a ring of charge with a uniform linear charge density and radius R was 
found to be equal to: 

 Vring = 2 R k π λ

R2+z2
;      (k = 1

4 π ϵo
)

But the equivalent line charge density is λ = 
Qring

2 π R
    

which ⇒ Vring = 
2 R k π

Qring
2 π R

R2+z2
=

k Qring

R2+z2
.   

For our ring:   Qring = Qring of radius r and thickness dr = 2 π r dr σ; (you could call this dQring, a differen-

tial of charge, if you wished)
ding-dong:  note that here we use r, not R because we are going to integrate over 

r.

Vring turns into a differential, dVdisk:

The differential of the potential due to this ring of radius r  =  dVdisk[z] = k 2 π r dr σ

r2+z2
.

We integrate over r from 0 to R to get Vdisk[z].

 (b) Enter your equation  for dVring[z] in an appropriate integral written in Mathematica and thereby 
find the equation for Vdisk[z].  A series of assumptions (more than you need) are provided that make 
the integration run like a champ.  They start with: $Assumptions = ......

Reminder: To execute each cell, click your mouse anywhere inside the cell and then hit Shift-
Return  (Shift-Enter)
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Below is an input cell you can use for finding V[z] :

In[118]:= (* Input Cell *)

ClearAll["`*"]
$Assumptions = R > 0 && R ∈ Reals &&

z ∈ Reals && z ≠ 0 && k ∈ Reals && k > 0 && σ ∈ Reals && σ > 0;
(* ENTER in this cell (below this comment) your dVdisk[z] into
the appropiate integral --reminder: Limits needed *)

Vdisk[z_] = 
0

R
k

2 π r σ

r2 + z2
ⅆr (* Here is dVdisk[z] inserted

into the integral needed to obtain Vdisk -- note limits *)

Vdisk[
z]

Out[120]= 2 k π σ R2 + z2 - Abs[z]

Out[121]= 2 k π σ R2 + z2 - Abs[z]

You should now have the scalar function V[z] defined as an algebraic expression which contains 
the parameters k, R, λ, and the variable z.

(c)  Assume some values for k, R, and σ; plot Vdisk[z] from some -z o to + z o. 

I chose k =1, R=1, and σ=1 and I set z o = 10.  [I suggest you use a σ >0 to help interpret your 
result.] 
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In[122]:= (* Input Cell -- enter your code and evaluate*)
k = 1; σ = 1; R = 1;

PlotVdisk[z], {z, -10, 10}, PlotRange -> All, AxesLabel → {"z", "Vdisk[z]"},

PlotLabel → StyleFramed"Vdisk[z] = 2 π ( 1 + z2 -Abs[z])",

16, Purple, Bold, Background → Lighter[Green]

Out[123]=
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Vdisk[z] = 2 π ( 1 + z2 -Abs[z])

(d)  Clear[k,σ, R] and then evaluate Vdisk[z] to see that it looks ok.   
(I’ll do it for you.)

In[124]:= Clear[k, σ, R]
Vdisk[z] (*I've entered it for you; just evaluate the cell *)

Out[125]= 2 k π σ R2 + z2 - Abs[z]

(e)  Interpret the plot of Vdisk[z] you obtained.

Enter your Discussion (this is a text cell):

Vdisk[z] should exhibit a mirror image about z = 0, along the z axis.  The reason:  For a positive 
σ, the charge on the disk is positive and therefore, because of the symmetry Vdisk[+zo] = 
Vdisk[-zo] (where zo > 0).  The graph shows this mirror symmetry.  

(FYI- extra info)
You should note that in both directions, the potential falls to very small values for z >> R; the disk 
starts looking like a point charge.  The total charge on the disk is:

Qdisk = (Area of Disk) * σ = π R2 σ

Here we plot Vdisk[z] and the potential of a point charge:  k Qdisk

Abs[z]
  (We insert the Abs[z] to replace z 

because for +Qdisk, V of a point charge is positive for both +z and -z;  Abs[z] takes care of this).
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Enter your Discussion (this is a text cell):

Vdisk[z] should exhibit a mirror image about z = 0, along the z axis.  The reason:  For a positive 
σ, the charge on the disk is positive and therefore, because of the symmetry Vdisk[+zo] = 
Vdisk[-zo] (where zo > 0).  The graph shows this mirror symmetry.  

(FYI- extra info)
You should note that in both directions, the potential falls to very small values for z >> R; the disk 
starts looking like a point charge.  The total charge on the disk is:

Qdisk = (Area of Disk) * σ = π R2 σ

Here we plot Vdisk[z] and the potential of a point charge:  k Qdisk

Abs[z]
  (We insert the Abs[z] to replace z 

because for +Qdisk, V of a point charge is positive for both +z and -z;  Abs[z] takes care of this).

In[126]:= Qdisk = π R2 σ;
k = 1; σ = 1; R = 1;

PlotVdisk[z],
k Qdisk

Abs[z]
, {z, -20, 20}, PlotRange → {0, 10}

Out[128]=
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As expected, at sufficiently large |z|, the two potentials (the disk and the point charge) are indistin-
guishable; both go to zero for z -> ∞.

(f) So let’s handshake on the presence of a term in Vdisk[z] containing Abs[z]. To find the E field from 
the potential M or we must take derivatives.  M does not like taking the derivative of Abs[z] with 
respect to z.  

We make life a lot easier for M and for ourselves if we divide the solution into two parts for z>0 and 
z<0.  We can combine them with an If statement.  It will look like this:
  
 Vdisk[z_] = If[z < 0, (Stick in here your Vdisk[z] for z < 0), If[z > 0, (Stick in here your Vdisk[z] for z > 0)]].  
    
 M is happy taking derivatives of Vdisk[z] in the form of the If statement; it simply performs it for each 
part separately.
    
 Thinking carefully, determine the appropriate Vdisk[z] for the two signs of z and enter into the input 
cell below your resulting Vdisk[z] [in the form of an If statement].  Execute the cell so M has Vdisk[z] 
defined.  I stick in a Clear[k, σ, R] to keep things honest.
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In[129]:= (* Input Cell - write your Vdisk[z] for both signs of z;
you can use an If statement OR the Piecewise function *)

Clear[k, σ, R]

Vdisk[z_] = Ifz < 0, 2 k π σ R2 + z2 + z , Ifz > 0, 2 k π σ R2 + z2 - z 

Out[130]= Ifz < 0, 2 k π σ R2 + z2 + z , Ifz > 0, 2 k π σ R2 + z2 - z 

(g)  For comparison with the plot of Vdisk[z] above, Plot this new Vdisk[z] for the same k, σ, R and for the 
same z o, over the range -z o to + z o.

As before, I used k =1,  σ=1, R = 1;   I set z o = 10.

In[131]:= k = 1; σ = 1; R = 1;
Plot[Vdisk[z], {z, -10, 10}, PlotRange -> All, AxesLabel → {"z", "V[z]"},
PlotLabel → Style[Framed["Vdisk[z] in the form of an If Statement"],

16, Purple, Bold, Background → Lighter[Green]]]

Out[132]=
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The plots for the two forms of Vdisk[z] are the same, i.e., for both ± z; the SIGN of z automati-
cally handled this for the first version.

(h) Now find the Electric Field, Edisk.   I used M’s Grad function in Cartesian Coordinates (which gener-
ates a VECTOR).

In[133]:= Clear[k, σ, R];
Vdisk[z] (* just to check to see it is still defined *)

Out[134]= Ifz < 0, 2 k π σ R2 + z2 + z , Ifz > 0, 2 k π σ R2 + z2 - z 
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In[135]:= Edisk[z_] = -Grad[Vdisk[z], {x, y, z}]
(* Vdisk is a function of z only -- therefore Ediskx and Edisky = 0; note that
the If statement form remains intact when the Grad operator is applied *)

Out[135]= 0, 0, -Ifz < 0, 1 +
z

R2 + z2
(2 k π σ), Ifz > 0, -1 +

z

R2 + z2
(2 k π σ)

This generates a 3D vector (for both signs of z o where the z component is the only non-zero component 
(reasonable:  Vdisk[z] depends only on z;  therefore, at the point P, Edisk[z] = Ediskz[z] z0

Using Vdisk[z] for the potential we get an If statement in the resulting Edisk[z].  Looking carefully, we 
can conclude that Edisk[z] for z < 0 equals (-) Edisk[z] for z > 0.        [Hopefully you agree that:   
Edisk[z] = Ediskz[z] z0 .]

(i)   Now Plot Ediskz[z] for the same k, σ, R and for the same z o, i.e., over the same range -z o to + z o 

you used above.  [You will need to grab the z component of  Edisk[z], which we call Ediskz[z].]
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In[136]:= (* Input Cell *)

Ediskz[z_] = Edisk[z] [[3]]

(* quick way to pull out the z component of Edisk[z] *)

k = 1; σ = 1; R = 1; (* need these defined for the Plot *)

Plot[Ediskz[z], {z, -10, 10}, PlotRange → {-7, 7},
AxesLabel → {"z", "Ediskz[z]"}, PlotLabel →

Style[Framed["Ediskz[z]"], 16, Purple, Bold, Background → Lighter[Green]]]

Out[136]= -Ifz < 0, 1 +
z

R2 + z2
(2 k π σ), Ifz > 0, -1 +

z

R2 + z2
(2 k π σ)

Out[138]=
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(j) Write down a brief interpretation/discussion about the two plots (e.g., SIGNS and the sign of λ).  
How are these two plots are related (hint:  SLOPE of one of them)??

Enter your Discussion (this is a text cell):
Interpretation:  First, we compare this curve with the above Vdisk[z],  (I’ve copied and pasted 
these plots from above to help you get started:)
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Vdisk[z] = 2 π ( 1 + z2 -Abs[z])
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Your Turn:
Note:  By looking at Vdisk[z] we can see where the slopes of Vdisk[z] are + and –; if we then take the – 

of these slopes we get the –/+ values of Ediskz[z].  The direction of Edisk[z]  must change because 
given a +σ, Ediskz[z] will point AWAY from the origin.

 This is consistent with the direction of the force on a + test charge q on the two sides of the disk 
(with + σ), namely q would be repelled from the disk.  Finally, note that the the slope of V is NOT 
zero at z = 0 (at the center of the ring) and rapidly changes sign.  
 
 This implies that Ediskz[z] = z component of - Grad[V ] should be non zero AND changes sign 
as we go from –z to +z (at z = 0);  this is clearly seen in the plot of Ediskz[z].
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Enter your Discussion (this is a text cell):
Interpretation:  First, we compare this curve with the above Vdisk[z],  (I’ve copied and pasted 
these plots from above to help you get started:)
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Vdisk[z] = 2 π ( 1 + z2 -Abs[z])
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Your Turn:
Note:  By looking at Vdisk[z] we can see where the slopes of Vdisk[z] are + and –; if we then take the – 

of these slopes we get the –/+ values of Ediskz[z].  The direction of Edisk[z]  must change because 
given a +σ, Ediskz[z] will point AWAY from the origin.

 This is consistent with the direction of the force on a + test charge q on the two sides of the disk 
(with + σ), namely q would be repelled from the disk.  Finally, note that the the slope of V is NOT 
zero at z = 0 (at the center of the ring) and rapidly changes sign.  
 
 This implies that Ediskz[z] = z component of - Grad[V ] should be non zero AND changes sign 
as we go from –z to +z (at z = 0);  this is clearly seen in the plot of Ediskz[z].

(k) No Brainer - Click inside the cell below (or select it by clicking on the bracket to the right) and 
execute it (Shift-Return);  Answer Boxes will appear; Click on the one you think is correct answer for 
this question:

Question:  Off this symmetry (z) axis, I expect Vdisk and Edisk to depend on z only.  [Live it up! Click 
both.]

Imagine moving a +q test charge around the disk with uniform + σ at various x,y,z values off 
the z axis.  I think you can see that the off axis solution: Vdisk[x, y, z] depends in general on x,y, 
AND z.
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(k) No Brainer - Click inside the cell below (or select it by clicking on the bracket to the right) and 
execute it (Shift-Return);  Answer Boxes will appear; Click on the one you think is correct answer for 
this question:

Question:  Off this symmetry (z) axis, I expect Vdisk and Edisk to depend on z only.  [Live it up! Click 
both.]

Imagine moving a +q test charge around the disk with uniform + σ at various x,y,z values off 
the z axis.  I think you can see that the off axis solution: Vdisk[x, y, z] depends in general on x,y, 
AND z.

In[139]:=

Button[
"1 I agree. Off the symmetry axis, Vdisk and Edisk depend on z only", {Print[

" Wrong --The symmetry of the problem is broken: in Cartesian Coordinates,
we therefore expect x and/or y dependence to creep in. "]}]

Button["2 I disagree; Off the symmetry axis, Vdisk and EEdisk
generally do not depend on z only ",

{Print[" Correct -- The symmetry of the problem is broken; in
Cartesian Coordinates, we therefore expect x and/or y
dependence to creep in.\n\nIn Spherical Coordinates one
would expect θ dependence in V and E, but no ϕ dependence."]}]

Out[139]= 1 I agree. Off the symmetry axis, Vdisk and Edisk depend on z only

Out[140]= 2 I disagree; Off the symmetry axis, Vdisk and EEdisk generally do not depend on z only

Correct -- The symmetry of the problem is broken; in Cartesian
Coordinates, we therefore expect x and/or y dependence to creep in.

In Spherical Coordinates one would expect θ dependence in V and E, but no ϕ dependence.

So No. 2 is the correct answer.

alles Gute!
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