In order to prove the viability of per core frequency scaling for multicore CPUs, we developed a power simulator that uses real parallel workloads to simulate the power consumption of CPUs with both non-uniform and uniform frequencies.

System Design

- **System design diagram**
- **Scheduling Algorithms (First Come First Serve)**
 - Algorithm 1: Finds the first core that can meet the deadline
 - Algorithm 2: Finds the core that completes the task at the lowest frequency
 - Algorithm 3: Finds the core that completes the task at the lowest frequency. Then finds the best frequency for all tasks in a given window and adjusts them.
- **Power Simulator user interface**

Estimated Power

- “...The power consumed by a core is (typically) proportional to the cube of its frequency” [1] and idle power is roughly 10% [2]
- **Notations**
 - f: frequency
 - F: Task finish time
 - M: Number tasks on nth core
 - J: Length of uniform frequency schedule
 - S: Task start time
 - N: Number of cores
 - t: run time

Results

- Calculated maximum frequency change cost for the viability of CPUs with non-uniform frequencies.
 \[
 x = (P_2 - P_1 + 1.1(I_2 - I_1)) / (C_1 - C_2)
 \]
- Maximum frequency change costs for viable non-uniform frequencies.

Conclusion

- Power simulation of normalized values shows that non-uniform frequencies may theoretically improve efficiency.
- Work is going to verify the theoretical results by measuring the real power consumption of multicore processors running a variety of workloads.

Acknowledgment

This work is supported by School of Engineering and Computer Science through the Undergrad Summer Research Program. Special thanks to Kyle Siehl for providing help and valuable feedback to the project.

References