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A B S T R A C T

When submerged, flexible vegetation bends back and forth under waves, and stems are tilted only a small angle
from vertical, simple models for stem motion and wave dissipation can be derived. Here, previous simple models
for the wave-induced bending of elastic vegetation are extended to account for buoyancy. Buoyancy results in
stem tension which, together with fluid drag, is incorporated in the Euler-Bernoulli problem, in which each stem
is modeled as a cantilevered elastic beam. Solutions are governed by a new ‘dimensionless buoyancy’ β, in
addition to the ‘dimensionless stiffness’ S identified by previous researchers. If S1/2, buoyancy is negligible
and previous results for elastic stems are recovered. Specifically, stems are nearly immobile for S 1, but for
S 1 stems move with surrounding water except in a thin ‘elastic boundary layer’ extending a distance S l1/4

*
above the bed, where =l* stem length. Conversely, if S1/2, then elasticity is negligible along most of the
length of the stem and new behaviour is found. Specifically, stems are nearly immobile for 1, but for 1
stems move with surrounding water except in a thin ‘buoyant boundary layer’ extending a distance l1/2

* above
the bed. For essentially inflexible cases (S 1 or 1), simulated depth-integrated wave dissipation roughly
equals the value Dr predicted for rigid stems. For highly flexible cases (i.e. for S and β both 1), dissipation is
limited to elastic or buoyant boundary layers, and therefore scales with the maximum of S Dr

1/4 and Dr
1/2 . For

the simple stems considered here, which have constant diameter and density, simulated dissipation for all S and
β was approximated by the expression + + +S S D[( /4)/(4 /4)] r

2 2 1/4 . This simple formula may require
modification for vegetation with complex geometry. Nevertheless, this analysis identifies β as a key parameter
for inclusion in dissipation formulations, together with parameters such as S identified by previous authors.

1. Introduction

Flexible vegetation canopies are widespread in lakes, estuaries, and
coastal oceans. Examples include saltmarshes, kelp forests, and seagrass
meadows. Aquatic vegetation provides numerous ecological and eco-
nomic benefits (Gren, 1995; Greenberg et al., 2006; Brander et al.,
2006; Siikamäki et al., 2012). In a world of rising sea levels, the ability
of aquatic vegetation to provide coastal protection, by sheltering
coastlines from energetic waves, has drawn particular attention (Broekx
et al., 2011; Jones et al., 2012; Arkema et al., 2013; Temmerman et al.,
2013; Möller et al., 2014; Feagin et al., 2015). Here, a model is de-
veloped to quantify the dissipation of waves by flexible vegetation.

Wave dissipation can be intense in some vegetation canopies (Riffe
et al., 2011; Jadhav et al., 2013), but can be greatly reduced if stems are
sufficiently flexible to move with the surrounding water (Koehl, 1984;
Elwany et al., 1995; Rosman et al., 2007; Zeller et al., 2014). Conse-
quently, models for dissipation by rigid vegetation (Dalrymple et al.,

1984; Lowe et al., 2005; Henderson et al., 2017) must be modified
when vegetation is flexible. Empirical models have been developed by
fitting measured dissipation in flexible canopies to functions of the
Reynolds number =R u r /e 0* * * and the Keulegan-Carpenter number

=K u t r/(2 )c 0* 0* * , where u0*= amplitude of velocity fluctuations near the
seabed, r*= stem radius, ν*= kinematic viscosity, and t0*= wave
period (Kobayashi et al., 1993; Mendez and Losada, 2004; Bradley and
Houser, 2009; Augustin et al., 2009; Jadhav et al., 2013; Blackmar
et al., 2014). Resulting empirical formulas yield good results when
tuned for a specific species and growth stage, but do not explicitly ac-
count for many of the parameters influencing stem motion, including
stem length, Young's Modulus, and buoyancy. These unaccounted-for
parameters differ between plants by orders of magnitude (e.g. for stem
lengths compare Utter and Denny (1996) with Bradley and Houser
(2009), and for Young's modulus compare Utter and Denny (1996) with
Zhang et al. (2015)) or sign (e.g. for buoyancy see Stewart (2006)).
Consequently, differing Re- and Kc-based formulations are required for

https://doi.org/10.1016/j.coastaleng.2019.04.009
Received 30 October 2018; Received in revised form 15 February 2019; Accepted 22 April 2019

∗ Corresponding author.
E-mail address: steve_henderson@wsu.edu.

Coastal Engineering 152 (2019) 103497

Available online 10 June 2019
0378-3839/ © 2019 Elsevier B.V. All rights reserved.

T

http://www.sciencedirect.com/science/journal/03783839
https://www.elsevier.com/locate/coastaleng
https://doi.org/10.1016/j.coastaleng.2019.04.009
https://doi.org/10.1016/j.coastaleng.2019.04.009
mailto:steve_henderson@wsu.edu
https://doi.org/10.1016/j.coastaleng.2019.04.009
http://crossmark.crossref.org/dialog/?doi=10.1016/j.coastaleng.2019.04.009&domain=pdf


differing species (Mullarney and Henderson, 2018).
As an alternative to empirical parameterization, models can be de-

veloped from an understanding of coupled fluid-solid mechanics. For
steady currents, extensive research has identified key parameters
quantifying the balance between the forces of fluid drag, elasticity, and
buoyancy. The dimensionless Cauchy number Ca controls stem bending
when elastic and drag forces balance, with minimal bending when
C 1a , and order-one stem tilt when =C 1a (for definitions of Ca and
other variables, see Table 1). For C 1a , bending is concentrated along

a small near-bed section of the stem, with the remainder of the stem
almost aligned with the flow. A dimensionless buoyancy parameter,
denoted P by Nikora et al. (1998), controls bending when buoyant and
drag forces balance, with minimal bending when P 1 (the relative
importance of buoyancy and elasticity is controlled by the parameter
B C P/a , Luhar and Nepf, 2011, where ‘∼’ indicates equality except
for an order-one constant).

For oscillatory flows under waves, comprehensive numerical models
have been developed to simulate stem motion (Utter and Denny, 1996;
Zeller et al., 2014; Luhar and Nepf, 2016). When stem tilts are small,
equations for drag and stem bending can be approximately linearized
and analytic solutions can be obtained. Mullarney and Henderson
(2010) (hereafter MH10) found analytic solutions for the case of neg-
ligible stem buoyancy. Here, the MH10 model is extended to account
for buoyancy.

The model of MH10 highlights the importance of a ‘dimensionless
stiffness’ S. This stiffness quantifies the competing effects of elastic
stresses, which resist stem bending, and fluid drag, which acts to bend
stems. For S 1 stems are nearly rigid, whereas for S 1 stems mostly
move back and forth with surrounding water. However, attachment to
the bed limits the near-bed motion of even the most flexible stems.
Consequently, for S 1, theory predicts an ‘elastic boundary layer’,
extending a distance S l1/4

* above the bed, within which elastic forces
cause substantial differences between water and stem motions [this
elastic boundary layer, where elastic forces acting on stems are sub-
stantial, differs from the familiar wave bottom boundary layer (here-
after WBBL), where shear stresses acting on the water are substantial].
Since wave dissipation requires relative motion between stems and
surrounding water, simulated dissipation in highly flexible vegetation is
limited to the elastic boundary layer, and depth-integrated dissipation
is reduced from the rigid value by a factor of order S1/4 [hereafter
denoted O S( )1/4 ]. In laboratory experiments, Luhar and Nepf (2016);
Luhar et al. (2017) found that dissipation in canopies of flexible arti-
ficial vegetation was consistent with this scaling over a wide range of S,
even for moderate stem tilts. In field experiments, Riffe et al. (2011)
found that bulk wave dissipation within a natural canopy of moderately
flexible sedge was also consistent with MH10 theory.

Luhar and Nepf (2016) presented an insightful explanation for the
relationship between the Cauchy number Ca, governing elastic bending
under steady flows, and the dimensionless stiffness S, governing oscil-
latory flows. For steady flows, leading-order drag reduction occurs as
stems are bent flat, which requires horizontally displacing the stem tip a
distance comparable to the stem length l*, with transition to this be-
haviour occurring as Ca becomes greater than 1 (Fig. 1a). In contrast,
for oscillatory flows, stems need not bend flat for major drag reduction
to occur (Fig. 1b). Instead, drag reduction in oscillatory flows can occur
when the stem is displaced a distance comparable to the ‘orbital dis-
placement scale’ W0*, with such bending occurring when S is less than
about 1 (neglecting a factor of π, discussed below, W0* is the distance
water particles move back-and-forth under waves). Therefore, when
W l0* *, much less bending is required for leading-order drag reduction
under waves than under currents. In terms of the ‘dimensionless stem
length’ =L l W/* 0*, this result can be restated in a more quantitative
manner: When L 1, leading-order drag reduction requires order L−1

less stem displacement under waves than under steady currents. Since
elastic forces are roughly proportional to stem displacement, this sug-
gests S C L( )a

1, as was confirmed by Luhar and Nepf (2016).
The scaling arguments of Luhar and Nepf (2016) neglected buoy-

ancy. However, we note that adapting their reasoning for buoyancy-
dominated cases suggests that bending is controlled by a ‘dimensionless
buoyancy’ PL( ) 1. For oscillating flows with negligible elastic
stiffness, detailed analysis below confirms that stem bending is indeed
controlled by β. Specifically, stems move much less than surrounding
water particles when 1, whereas stems move with surrounding
water except in a near-bed ‘buoyant boundary layer’ when 1.

This paper presents models for bending along the length of a

Table 1
List of variables.

Variable Meaning Units

A* stem cross-sectional area m2

=b g s
*

* ( * )

*
stem buoyancy ms−2

CD stem drag coefficient –

=Ca
r u l
E I

* 0* 0*
2

*
3

* 0*

Cauchy number –

D* depth-integrated mean wave dissipation for
flexible stem

kg m2s−3

Dr∗ depth-integrated mean wave dissipation for rigid
stem

kg m2s−3

E* stem Young's modulus kg m−1s−2

fb∗ vertical buoyant force on stem, per unit stem
length

kg s−2

fd∗ horizontal drag force on stem, per unit stem length kg s−2

Fb∗ vertical buoyant force integrated along length of
stem

kg ms−2

Fd∗ horizontal drag force integrated along length of
stem

kg ms−2

g* gravitational acceleration ms−2

I* second moment of stem area m4

I0* typical scale for I* (=r0*4 for cylindrical stems) m4

=I I I/* 0* dimensionless second moment of stem area –
l* stem length m

=L l W/* 0* dimensionless stem length –

=P
CDu
b r

0*
2

* 0*

dimensionless buoyancy (for steady flow) –

r* stem radius m
r0* stem radius at =z 0 m

=r r r/* 0* dimensionless stem radius –
s* distance from stem base, measured along stem m

=S
E r t

CDl u
* 0*

3 0*

* *
4 0*

dimensionless stiffness –

t* time s
t0* wave period s

=t t t/* 0* dimensionless time –
T* tension, integrated over stem cross-section kg ms−2

u* horizontal water velocity ms−1

us∗ horizontal stem velocity ms−1

u0* amplitude of water velocity fluctuations ms−1

=u u u/* 0* dimensionless water velocity –
=u u u/s s 0* dimensionless stem velocity –

V* elastic shear force, integrated over stem cross-
section

kg ms−2

*V stem volume above elevation z m3

0*V volume of entire stem m3

= /* 0*V V V dimensionless stem volume above elevation z –
W* horizontal displacement of water particles m

=W u t0* 0* 0* ×(2 ) amplitude of water particle displacement m
=W W W/* 0* dimensionless water particle displacement –

X* horizontal stem displacement m
=X X W/* 0* dimensionless stem displacement –

z* elevation above bed m
=z z l/* * dimensionless elevation –
= D D/ r* dimensionless dissipation –

= b r t
CDl u

* 0* 0*
* 0*

dimensionless buoyancy (oscillatory flow) –

Γ ratio between stem and water complex amplitudes –
ν* kinematic viscosity of water m2s−1

ρ* water density kg m−3

ρs∗ stem density kg m−3

θ stem tilt (radians from vertical) –
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continuous stem, neglecting stem inertia. This approach contrasts with
some previous models for buoyant vegetation, which represented in-
ertia, drag and buoyancy as if they acted at a single point, attached to
the seabed by a thin, straight, non-buoyant rope (Utter and Denny,
1996; Denny et al., 1997; Stevens et al., 2001; Denny and Gaylord,
2002). When inertia is neglected, we show that vegetation motion in
these previous ‘buoy on rope’ models is also governed by β. However,
such models do not resolve motion along the length of a continuous
stem, and do not resolve the buoyant stem boundary layer.

In sparse vegetation canopies, the water velocity can be calculated
from wave amplitude and standard frictionless wave theory (Dalrymple
et al., 1984). In more dense canopies, vegetation drag modifies the
relationship between wave amplitude and water velocity (Lowe et al.,
2005; Henderson et al., 2017). Here, the relationship between wave
amplitude and water velocity is not considered. Instead, the water ve-
locity assumed to be a known sinusoidal function of time, and the focus
is on resulting stem motion and dissipation.

We start by simplifying and non-dimensionalizing equations pre-
viously used for numerical modeling of elastic, buoyant stems (Luhar
and Nepf, 2016) for the case of small stem tilts (Section 2). Resulting
scaling parameters are compared with parameters governing previous
steady-flow and buoy-on-rope models (Section 3). Solutions are pre-
sented for depth-uniform flows (Section 4), considering in turn non-
linear numerical simulations (Section 4.1) and linearized analytic so-
lutions (Section 4.2). For small S and β, boundary layer solutions reveal
that the buoyant boundary layer thickness scales with l1/2

* (Section 5).
To facilitate the development of models for practical applications, we

show that depth-integrated wave dissipation is well approximated by a
straightforward function of S and β in the case of simple stem geome-
tries (Section 6). Applications and limitations of analysis are illustrated
by considering a range of natural vegetation (Section 7) and results are
summarized (Section 8).

2. Model equations and scaling

Four forces acting on stems will be considered:
1. The elastic shear force V* (i.e. the elastic shear stress integrated

over the stem's cross-sectional area), which resists stem bending. From
Euler-Bernoulli theory for the bending of thin beams (e.g. Niklas, 1992;
Luhar and Nepf, 2016), =V s E I s/ ( / )* * * * * , where =s* along-stem
distance measured from stem base, = stem tilt from vertical (in ra-
dians), =E* Young's modulus, and the second moment of stem area

=I dA* *
2

*, where =* distance in flow direction from center of stem,
and the integral is taken over the stem's cross-section (for circular cross-
section, =I r /4* *

4 , where =r* stem radius, Niklas, 1992). Throughout,
stars indicate dimensional variables.

2.The upward buoyant force per unit length of stem

=f b A ,b * * * (1)

where the stem buoyancy =b g ( )/s* * * *, =g* 9.8 m s−2, =* water
density, =s stem density, and =A* stem cross-sectional area.

3.The stem tension force T* which, for small stem tilts, will balance
stem buoyancy.

4.The drag force per unit length of stem fD∗. Stems that are sus-
ceptible to bending by waves often have diameters much less than the
orbital displacement (e.g. for seagrasses, sedges, and kelp, stem dia-
meters often range from 0.8 to 2 cm, while in estuaries and the coastal
ocean, orbital displacements often range from 10 to 200 cm, Section 7).
Therefore, we assume a large Keulegan-Carpenter number Kc. This large
Kc suggests negligible acceleration-dependence of drag (Sumer and
Fredsøe, 1997; Zeller et al., 2015; Mullarney and Henderson, 2018),
leading to

=f r C u u u˜ ( )D D s* * * * (2)

where CD is a drag coefficient, u* and us∗ are time-dependent water and
stem velocities, and in fully nonlinear drag formulations =u u u˜ | |s* *
where vertical bars (|⋅|) denote absolute value. Analytic solutions will
be obtained by linearizing this expression for drag following Borgman
(1967); Lowe et al. (2007); Mullarney and Henderson (2010); Jadhav
et al. (2013); Henderson et al. (2017). In this linearized formulation, we
replace time-varying ũ* with a time-constant value. It will prove con-
venient to express this constant value in terms of a parameter ξ, which
is defined such that

=u u˜ 8
3

.* 0* (3)

This expression is chosen because, for sinusoidal velocity fluctua-
tions and rigid stems ( =u 0s ), the mean squared error between linear
and nonlinear drag parameterizations is minimized by setting = 1. For
mobile stems, the optimal ξ will be found by model tuning to be slightly
less than 1 (likely because <u u u| | | |s* * when stem motions follow
water motions). In very dense canopies the drag coefficient is modified
by interactions between stems (Tanino and Nepf, 2008), although many
natural canopies are sufficiently sparse that this modification can be
neglected.

Neglecting stem-parallel skin friction and terms of order Kc
1 (which

include Froude-Krylov force, added mass, and stem inertia), the stem
momentum equation (e.g. Luhar and Nepf, 2016, their equation (7))
reduces to the force balance

+ + + =
s

V iT e if f e[( ) ] 0,i
b D

i

*
* * (4)

where the real and imaginary components respectively represent

Fig. 1. Drag reduction mechanisms in flexible vegetation. For steady flows, or
oscillating flows with small dimensionless length [panel a, L 1, where L=
(stem length)/(water particle displacement)], drag reduction occurs when an
initially vertical stem (vertical light green line) is bent (dark green curve) by
water velocity u*, so that water over a range of elevations (labeled Δ) does not
experience vegetation drag. For this mechanism to yield leading-order drag
reduction, stem tilts must be order-one, so the horizontal stem displacement X*

must be comparable to the stem length l*. For large dimensionless length (panel
b, L 1), a different drag reduction mechanism operates. Specifically, as water
particles are displaced alternately left (vertical dashed blue line labeled 1) and
right (dashed blue line 2), a sufficiently flexible stem is displaced alternately
left (dark green curve 1) and right (light green curve 2), so that the upper
portion of the stem moves with surrounding water. Drag on the stem's upper
section is then reduced, because water motion relative to the stem is reduced.
For this mechanism to yield leading-order drag reduction, the horizontal stem
displacement X* must be comparable to the water particle displacement (i.e.
order-W0*), so stem tilt must be order =W l L/ 10* *

1 . This small tilt required
for drag reduction when L 1 (panel b) contrasts with the order-one tilt re-
quired for drag reduction when L 1 (panel a), accounting for an order-L
difference between dimensionless parameters governing drag reduction in the
two cases. Note that the drag-reduction mechanism of panel b cannot apply
when L 1, because stems are then too short to move with the surrounding
water. Furthermore, the mechanism of panel a cannot apply when L 1, be-
cause water particles then do not move sufficiently to generate order-one tilt.
(For interpretation of the references to colour in this figure legend, the reader is
referred to the Web version of this article.)
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horizontal and vertical forces.
For small stem tilt ( 1), the along-stem derivative s/ * can be

approximated by the vertical derivative z/ * (z* measured upwards
from the bed), with neglected error O ( )2 [where O ( )2 indicates a term
of order θ2]. Furthermore, elastic and drag forces are almost horizontal
[vertical components O ( )], and can be neglected in the leading-order
vertical component of (4). Integrating the imaginary component of (4)
from any elevation z* to the stem tip (where =T 0* ), neglecting con-
tributions from vertical elastic and drag forces, and applying (1) then
yields the leading-order vertical force balance

=T b ,* * * *V (5)

where = A dzz
l

* * *
*V is the stem volume above z*. Therefore, at leading

order, stem tension balances buoyancy. Taking the real part of (4),
noting that = +e i O1 ( )i 2 , and neglecting O ( )2 terms, yields
the leading-order horizontal force balance

+ + =E I z
z

T
z

f( / ) ( ) 0.D

2
* * *

*
2

*

* (6)

Although buoyancy does not directly exert a horizontal force, it is
responsible for stem tension (5), which can exert a horizontal force
when stems tilt [second term of (6)]. If elastic forces (first term) are
negligible, (6) is a vertically inverted form of the classic oscillating,
hanging chain problem (e.g. problem 24.4 of Simmons, 1972). If
buoyant forces are negligible, (6) is the model of MH10.

To clarify the magnitude of terms in (5)–(6), introduce the di-
mensionless variables

=z z l/ ,* * (7)

=r r r/ ,* 0* (8)

=I I I/ ,* 0* (9)

= / .* 0*V V V (10)

where r0*, I0* and 0*V are typical magnitudes of r*, I* and *V . For simple
stem geometries (e.g. nearly cylindrical stems), we choose to scale I*
and *V with

=I r ,0* 0*
4 (11)

= r l .0* 0*
2

*V (12)

Let t* be time, let X* and W* be horizontal stem and water dis-
placements, and let corresponding dimensionless variables be

=t t t/ ,* 0* (13)

=X X W/ ,* 0* (14)

=W W W/ ,* 0* (15)

where

=W u t .0* 0* 0* (16)

For sinusoidal waves, W0* defined by (16) is a factor of 2π greater than
the amplitude of water particle displacements. Further define

=u u u/* 0*, =u u u/s s 0* and =u u u˜ ˜ /* 0*, so nonlinear and linear drag
formulations respectively yield =u u u˜ | |s and =ũ 8 /(3 ). Assume
simple stem geometry, so that (11) and (12) apply. Now noting that

X z/* * and combining (5)–(6) yields the governing equation for
buoyant, elastic stem motion:

=S
z

I X
z z

X
z

ru W X
t

˜ ( ) ,
2

2

2

2 V
(17)

where we have used =u u W X t( )/s , the dimensionless stiffness
(previously defined by MH10) is

=S E r t
C l u

,
D

* 0*
3

0*

* *
4

0* (18)

and the dimensionless buoyancy (not identified by previous re-
searchers) is

= b r t
C l u

.
D

* 0* 0*

* 0* (19)

For more complex stem geometries, S and β in (17) are replaced by

=S E I t
C l r u

˜ ,
D

* 0* 0*

* *
4

0* 0* (20)

and

= b t
C l r u

˜ ,
D

* 0* 0*

*
2

0* 0*

V

(21)

where we take r0* as half the stem width in the direction normal to the
flow. We will present results for cylindrical stems in terms of S and β,
but for more complex geometries, S̃ and ˜ are preferred (Sections 6,7).

Boundary conditions at the bed are

==X 0,z 0 (22)

=
=

X
z

0.
z 0 (23)

Boundary conditions at the stem tip are

=
=

X
z

0,
z

2

2
1 (24)

=
=

X
z

0.
z

3

3
1 (25)

The model (17), (22)–(25) is equivalent to the model of MH10,
except for the addition of buoyancy-induced tension [second term on
the left of (17)].

By inspection of (17), for S 1 or 1, elasticity or buoyancy is
sufficient to prevent almost all stem motion (X 1). Conversely, for
S 1 and 1, stems must move with the surrounding water along
much of the stem length (so W X| | 1). Satisfaction of (22) by very
flexible stems then requires a near-bed Stem Boundary Layer (SBL)
where elasticity and/or buoyancy become significant.

3. Comparison with previous scaling parameters

The parameters S and β governing small-tilt oscillatory stem motion
are related to parameters governing stem bending under steady flows
(Section 1). Specifically, under steady flows, stem bending is controlled
by the Cauchy number (de Langre, 2008)

=C r u l
E I

,a
* 0* 0*

2
*
3

* 0* (26)

And the buoyancy parameter (Nikora et al., 1998)

=P C u
b r

,D 0*
2

* 0* (27)

where we have rewritten the Nikora et al. expression in terms of near-
bed velocity, and for simplicity omitted a factor of π. Comparing
(18)–(19) with (26)–(27), applying (11) and neglecting the order-one
factor CD, yields =S C L( )a

1 and = PL( ) 1, as anticipated in Section 1.
An additional dimensionless combination considered by Luhar and

Nepf (2011) is B C P/a , which is roughly the ratio between buoyant
and elastic forces for bending under steady flows. The dimensionless
buoyancy β is related to B by BS B CaL( ) 1. Therefore, only three
of the six dimensionless variables S, β, L, Ca, P and B are independent.

Having defined the governing dimensionless parameters, we sum-
marize the relationship between previous research and the work pre-
sented here as follows: For steady flows W0* , so =L 0. Therefore, a
slowly-varying form of steady-flow analysis (de Langre, 2008; Luhar
and Nepf, 2011) likely applies in the limit L 1, as noted previously by
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Luhar and Nepf (2016). For L 1, MH10 analyzed the case = 0. The
original contribution here is to analyze the L 1 case for non-zero β.
Of the six dimensionless variables noted above, only S and β are con-
sidered below, because these yield the simplest expressions in oscil-
lating flow cases with L 1. However, if desired, results can be re-
expressed in terms of other parameters such as Ca, P, and L, as was
previously done for the elasticity-dominated case by Luhar and Nepf
(2016).

The parameter β also plays a key role in previous buoy-on-rope
models for buoyant vegetation (e.g. Utter and Denny, 1996; Denny
et al., 1997). Under the large-Kc approximation discussed above and
neglecting vertical water motion, equation (15) of Utter and Denny
(1996) reduces to the force balance

+ + =iTe iF F 0,i
b D* (28)

where real and imaginary parts represent horizontal and vertical forces,
and buoyant and drag forces integrated along the length of the stem (Fb∗

and FD∗) are treated as if they acted at a single point. From the small-tilt
vertical force balance T Fb* . The leading order horizontal force bal-
ance is then

=X u W X
t

˜ ˜ ( ) , (29)

As can be established by noting =F bb * * 0*V ,
=F l r C u W X t˜ ( )/D D* * * * * * * and e i iX l1 1 /i

* *. By inspec-
tion, buoyancy prevents almost all stem motion when ˜ 1, whereas
stems move with surrounding water (W X| | 1) when ˜ 1.
Therefore, although previous buoy-on-rope models of buoyant vegeta-
tion accounted for additional physics not considered here (such as in-
ertia, Denny et al., 1998), these previous models are governed by the
parameter β when the approximations considered in this paper are
applied.

4. Motion of entire stems in depth-uniform flows

This section presents solutions for cases where the water velocity is
nearly uniform along the length of the stem. This requires that stem
length is much less than ×(2 ) 1 wavelength, and that stem length is
much greater than WBBL thickness. Water motion in fact depends on
stem friction, potentially leading to complex depth-dependence of
water velocity, but the density of many natural canopies is sufficiently
low that this effect can be neglected (Dalrymple et al., 1984; Lowe
et al., 2005; Henderson et al., 2017). Analytic solution for arbitrary
depth-dependence is possible using normal mode expansions following
MH10, but for simplicity is omitted here.

4.1. Nonlinear drag

Finite difference solutions to (17), (22)–(25) were obtained for si-
nusoidal water velocity =u tcos( ), with = 2 (corresponding to
dimensionless period 1 and dimensional period t0*). A uniformly spaced

numerical grid was used, with 150 time steps per period, and either
100, 200, or 400 vertical gridpoints (the higher resolutions were used
for SBL cases). For each time step, following the Crank-Nicholson ap-
proach (Morton and Mayers, 2005), elastic and buoyant terms [left of
(17)] were evaluated by averaging values at old and new times, leading
to an implicit scheme. The numerical scheme can incorporate either
linear or nonlinear drag. For linear drag, numerical solutions converge
to the analytic solutions given below. For nonlinear drag, it is neither
physically reasonable nor numerically desirable for ũ to drop to exactly
zero (Trowbridge and Madsen, 1984), so we replaced ũ in (17) with the
maximum of ũ and 0.1. Stem motion was simulated for thirty periods
for stems with round cross-section and constant diameter, and the last
period of motion was selected for presentation below. We chose =t 0 to
coincide with the start of this last period, so that =t 1 at the end of the
last period.

As expected, when either S 1 or 1, stem motions were much
smaller than water motions (so X| | 1, Fig. 2). Water velocity and stem
displacement were maximum in the positive x direction at =t 0 or 1,
whereas water velocity and stem displacement were maximum in the
negative x direction at =t 1/2. At =t 1/4 and 3/4 water velocity was
zero, and stem displacement was nearly zero. Since water velocity leads
water displacement by 1/4 of a cycle, it follows that stem displacement
leads water displacement by about 1/4 of a cycle in these nearly-im-
mobile cases (this phase lead is discussed in the context of the elasticity-
dominated case by MH10).

Water motions are perfectly sinusoidal with frequency ω, but non-
linearity of the drag formulation leads to small stem motions at odd
harmonic frequencies such as 3ω and 5ω (nonlinear friction does not
generate even harmonics, see Trowbridge and Madsen, 1984), but the
frequency-ω motion accounted for> 96% of variance in all cases
considered here (not shown). Given this dominance of frequency-ω
motion, the relationship between water and stem motions is con-
veniently summarized by the elevation-dependent transfer function

= X
W
ˆ
ˆ , (30)

where the frequency-ω complex amplitudes for stem and water dis-
placement, respectively X̂ and Ŵ , were calculated from the final period
of simulated motion by complex demodulation [i.e.

=X X t e dtˆ 2 ( ) i t
0

1 and =W W t e dtˆ 2 ( ) i t
0

1 ]. Positive (negative)
real Γ indicates stem motion in (out of) phase with water motion,
whereas positive (negative) imaginary Γ indicates stem motion leading
(lagging) water motion. For immobile stems = 0, whereas in regions
where stems move with surrounding water = 1. For the nearly-im-
mobile stems shown in Fig. 2, which move 1/4-cycle ahead of sur-
rounding water, Γ is small and imaginary (solid black and grey curves
Fig. 3a–c).

In cases with non-zero S, stem tilt tends smoothly to zero as the bed
is approached (Fig. 3a–b), whereas non-zero tilt is maintained even
close to the bed for =S 0 (Fig. 3c). Below, it will be shown that stem tilt
is small in a near-bed region whose thickness approaches zero when S

Fig. 2. Variation with time t through one wave cycle of horizontal stem displacement X versus elevation z for three nearly-immobile cases. Forces resisting bending
are elastic (left), buoyant (right) and mixed (center).

S.M. Henderson Coastal Engineering 152 (2019) 103497

5



approaches zero (Section 5).
Numerically-derived transfer functions for a range of stiffness and

buoyancy values are shown as solid curves in Fig. 3a–i. As stems be-
come more mobile, the component of stem motion in phase with water
motion grows larger (increasing positive real component of Γ), until the
in-phase and in-quadrature components are of similar size for order-one
S or β (compare black and grey curves, Fig. 3d–f). For S and β well
below 1, the upper parts of stems move almost with surrounding water
(Γ approaches 1, Fig. 3g–i). As will be discussed further in Section 5, the
nearbed region where water and stem motions appreciably differ (i.e.
where Γ is substantially different from 1) becomes steadily thinner with
decreasing S and β.

4.2. Linearized drag

In this section, analytic solutions to (17), (22)–(25) are presented
for the case of linearized drag. These analytic solutions will approx-
imate the numerical solutions for nonlinear drag (Section 4.1), and will
clarify scaling.

Consider sinusoidal motion, so = +W We cc( ˆ )/2i t and
= +X X e cc( ˆ )/2i t , where cc indicates the complex conjugate of the

previous term. For stems with round cross-section and constant dia-
meter [so =I /4 and = z(1 )V ], collecting coefficients of eiωt in
(17) with linearized drag yields

=S
z z

z
z

i(1 ) (1 ),
4

4 (31)

where

=S S3 /(64 ), (32)

= 3 /(16 ), (33)

And we have used = 2 and =e t i e( )/i t i t . Boundary condi-
tions are obtained by replacing X with Γ in (22)–(25).

First consider the elasticity-dominated case. Setting = 0 recovers
the problem considered by MH10, for the special case of depth-uniform
water velocity. The solution is

= + + ++ +( )x e x e x e x e1 ,ir z ir z ir z ir z
1 2 3 4 (34)

where = ±±r i S[ ( / ) ]1/2 1/2 The coefficients x1 – x4 are determined
from the boundary conditions, which yield the system of simultaneous
equations

=Ax b (35)

where = x x x xx [ , , , ]T
1 2 3 4 , =b [1,0,0,0]T , and

=
+ +

+ +

+ +

+ +

+ +

A
r r r r

r e r e r e r e
r e r e r e r e

1 1 1 1

.r r r r

r r r r

2 2 2 2

3 3 3 3
(36)

Now consider the buoyancy-dominated case. Setting =S 0 gives a
solution

= J i z
J i

1 {2[ (1 )] }
{2[ ] }

,0
1 1/2

0
1 1/2 (37)

where J0 is a Bessel function of the first kind of order zero. Since (31)
reduces to a second-order differential equation in this =S 0 case, only
two boundary conditions can be satisfied (conditions are (22), and that

=z 1 is finite).
For cases with S and β both nonzero, (31) with linear drag was

solved numerically.
The parameter ξ in expression (3) for linearized drag was chosen to

minimize the errors resulting from linearization. Agreement between
linear and nonlinear drag formulations was optimized using the em-
pirical formula

= + +
+ +
S

S
1
2

1 4
0.2 4

.
2

2 (38)

This expression gives = 1 for rigid stems, whereas ξ drops below 1
as stems become flexible, as expected [see discussion following (3)].
The choice of ξ has only a modest effect on solutions, because ξ in (38)
never drops below 1/2 (for the flexible limit), and because ξ appears in
solutions as only a rescaling of the vertical axis by a constant 1/4 or 1/2

[for elasticity- and buoyancy-dominated cases respectively, from (32),

Fig. 3. Nonlinear numerical solutions (solid curves)
and linearized approximations (dashed curves) for
real (black) and imaginary (grey) components of
transfer function Γ (defined in equation (30)) versus
elevation z. Dimensionless stiffness S and buoyancy
β, stated in each panel, include (a–c) low-, (d–f)
moderate-, and (g–i) high-flexibility cases. Restoring
forces elasticity-dominated (a, d, g), buoyancy-
dominated (c,f,i), or mixed (b,e,h).
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(33), (34) and (37)]. Using (38) to evaluate ξ, solutions for linearized
drag were found to provide a good approximation to numerical solu-
tions for nonlinear drag (compare solid and dashed curves, Fig. 3a–i).

5. Boundary layers

For sufficiently small S and β, the nearbed region where Γ departs
appreciably from 1 becomes a thin SBL. A boundary layer coordinate
appropriate for negligible buoyancy is (MH10)

= z
S

.e 1/4 (39)

This coordinate is chosen so that (for 0), 0 for 1e and
1 for 1e . A boundary layer coordinate appropriate for negligible

stiffness will prove to be

= z .b 1/2 (40)

We first express the SBL solution, accounting for both buoyancy and
stiffness, as a function of e, and then note how this solution can be
rescaled in terms of b in the buoyancy-dominated case.

In the SBL, z1 1, so (31) simplifies to

= i ( 1),
e e

2

4

2

2
(41)

where the importance of buoyancy relative to stiffness is determined by
= S 1/2. Boundary conditions at the bed are unchanged. Far above

the bed, stems must move with the surrounding water, so

=
+

0,
e

2

2
e (42)

=
+

0
e

3

3
e (43)

The solution is

= +

+

+r e r e
r r

1 ,
r re e

(44)

where

= ±±r i{ /2 [( /2) ]} .1/2 (45)

For small, moderate, and large γ', these solutions are shown as a
function of z (using 39) by dashed lines in Fig. 4a – c. In the case
presented, the SBL occupies a substantial fraction of the stem. Although
(42)–(43) are only formally valid when the SBL is very thin, the SBL
solution still provides a good approximation to the numerical solution
in the cases shown. With further reductions in S or β, the SBL thickness
decreases, and the accuracy of the boundary layer approximation im-
proves further. Near the bed, stem motions lead water motions by 45 ∘.

For the elasticity-dominated case 1 (Fig. 4a),
±r e e{ , }i i7 /8 5 /8 , giving a corrected form of the stem boundary layer
solution found by MH10 (they erroneously reported

=±r e e{ , }i i7 /8 5 /8 ). As noted by MH10, the dimensional thickness of
this elastic SBL is order S l1/4

*. To remove ambiguity, we define the SBL

thickness as the elevation where |Γ| is maximum, which proves to be
=e 3.92, or =z S3.92 1/4 (solid horizontal grey lines, Fig. 4).
For = 1 (Fig. 4b), both buoyancy and stiffness influence leading

order stem motion, and the boundary layer thickness remains O S l( )1/4
* ,

which now also equals O l( )1/2
* .

For the buoyancy-dominated case 1 (Fig. 4c), +r 1/2 and
r e i1/2 3 /4. From (44) and (40), since +r r| | | |* * ,

=e e1 1 ,r re b b (46)

where =r eb
i3 /4. We again define the SBL thickness as the elevation

where |Γ| is maximum, which occurs at = 3.23b , or =z 3.23 1/2 (da-
shed horizontal grey lines, Fig. 4).

Although the small term omitted from (46) has little effect on X for
1, it does substantially influence X z/ in an inner boundary layer.

This inner boundary layer is much thinner than the buoyant boundary
layer, and is required to satisfy (23). Within this inner layer of thickness

=O S l O S l( ) [( / ) ]1/2 1/4
*

1/2
* , both buoyancy and stiffness are sig-

nificant. Although this thin inner boundary layer has little effect on
stem displacement or wave dissipation, it may have biological re-
levance since it influences the stresses exerted on the plant.

6. Approximation of total wave dissipation

The mean depth-integrated wave dissipation is the vertical integral
of u fD* , where the overbar (¯) denotes a time average. This proves to
equal the vertical integral of u u f( )s D* (Appendix A). Using this
result, for constant diameter stems and depth-uniform flow, the mean
depth-integrated dissipation can be written

=D Dr* (47)

where the dissipation for a rigid stem is =D l r C u[4/(3 )]r D* * * 0*
3 [the

factor 4/(3 ) is the mean of t|cos ( )|3 ], and the reduction in dissipation
resulting from stem motion is measured by

= u u dz(3 /4) | |s0

1 3
(48)

(in the notation of Luhar and Nepf, 2016, = l l/e ). Note = 1 for rigid
stems ( =u 0s ), whereas 1 indicates a major reduction in dissipa-
tion, as expected for highly flexible stems (u us along most of stem
length).

Dependence of α on S and β, evaluated by repeated numerical si-
mulations with nonlinear drag, is shown in Fig. 5. For large S or β,
vegetation is almost immobile, dissipation almost equals the rigid-stem
value, and 1. Lower S and β result in reduced dissipation and < 1.
For S, 1, u u| | 0s above the SBL, so dissipation scales with the
SBL thickness (i.e. with S1/4 when = 0, or with 1/2 when =S 0).
Across the full range of S and β, the empirical function

+
+ +
C S C

C S C1
S

S

2

2

1/4

(49)

with =C 1/4S and =C 1/16 approximated α to within 20% (compare
solid and dashed contours, Fig. 5). This expression was chosen because
of its simplicity, and because it recovers the correct limiting behaviours
[i.e. if S 1 or 1 (rigid limit) then 1; if S 1 and S 11/2

(elastic boundary layer) then = O S( )1/4 ; if 1 and S 11/2

Fig. 4. Nonlinear numerical solutions (solid curves)
and linearized boundary layer approximations (da-
shed curves) for real (black) and imaginary (grey)
components of transfer function Γ versus elevation z.
The small values of dimensionless stiffness S and
buoyancy β, stated in each panel, indicate highly
flexible stems. Restoring forces elasticity-dominated
(a), buoyancy-dominated (c), or mixed (b).
Horizontal grey solid and dashed lines respectively
mark =z S3.92 1/4 and =z 3.63 1/2.
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(buoyant boundary layer) then = O ( )1/2 ].
We have presented results for cylindrical stems in terms of S and β,

but for more complex geometries S̃ and ˜ are preferred. Noting that
=S S(4/ ) ˜ and = ˜/ for cylindrical stems, (49) can be rewritten as
= + + +C S C C S C[( ˜ ˜ ˜ ˜ )/(1 ˜ ˜ ˜ ˜ )]S S

2 2 1/4 where = =C C˜ 4 /S S
1 and

= =C C˜ / (4 )2 2. This expression is used below to estimate dis-
sipation for stems with rectangular cross section. For stems with com-
plex elevation-dependent geometries, recalculation of numerical solu-
tions would be required.

7. Applications to natural vegetation

The drag coefficient CD varies with Re and Kc (Luhar and Nepf,
2016), but for simplicity we will use a typical constant value =C 2D . We
also use a seawater density = 1010* kgm−3.

First, we analyze the bending of Zostera marina seagrass, whose
properties are taken from Luhar and Nepf (2011). We consider stems of
length =l 0.4* m with rectangular cross-section (width normal to
flow=8mm, thickness in flow direction=0.35mm), density = 700s
kgm−3, and Young's modulus =E 10*

9 Pa. We assume wave orbital
motions with period =t 20* s and amplitude =u0* 0.3 m s−1. For mod-
erately flexible stems, stem tilt is of order (horizontal water particle
displacement)/(stem length)= = =W l L/(2 ) (2 ) 0.240* *

1 , so stem tilt is
only moderately small. Much larger u0* or t0*, as might be common on
exposed coasts, would bring the small-tilt approximation into question.
The dimensionless stiffness = ×S̃ 9.2 10 4 and the dimensionless
buoyancy = ×˜ 1.8 10 2. These values suggest stems slightly less flex-
ible than shown in Fig. 4, but substantially more flexible than shown in
Fig. 3g–i. For steady 0.3ms 1 flows, buoyancy plays a major role re-
sisting stem bending (B 20, Luhar and Nepf, 2011). However, for
fluctuating flows the small S̃ and ˜ suggest concentration of bending
near the bed, which increases the relative importance of elastic forces
(because elastic forces scale with a higher vertical derivative). Conse-
quently, the relative importance of buoyancy and elasticity in the SBL is
given by = =S˜ ˜ ˜ 0.581/2 , indicating a small but non-negligible role

for buoyancy. Direct calculation confirms that elasticity is slightly more
important than buoyancy for this case [evaluating first and second
terms on left of (17) from model output and calculating the root-mean-
squared (rms) over all elevations and times yields rms buoyant for-
cing=0.49×rms elastic forcing]. Owing to the high flexibility of these
stems, predicted dissipation is reduced to 13% of the value expected for
equivalent rigid vegetation [i.e. = 0.1311, calculated from (49)]. Ne-
glecting buoyancy would have negligible effect on predicted dissipation
( = 0.1308 if buoyancy is neglected), whereas neglecting elasticity
would lead to substantial errors ( = 0.037 if elasticity is neglected).
Further calculations show that elasticity dominates over buoyancy in
most common Z. marina cases, but examples with significant buoyant
effects can be found. Since = =S b l t C E r u[ /( )]D

1/2
* * * 0* * 0* 0*

1/2, cases
with long, thin stems, long wave periods, and small wave amplitudes
are most likely to be affected by buoyancy. For example, setting =l 0.8*
m, =t 80* s and =u0* 0.03m s−1, while retaining the values used above
for other variables, yields = ×S̃ 2.3 10 3, = ×˜ 3.5 10 1, and = 0.197.
In this case, buoyant forces exceed elastic forces, and the error that
would result from neglecting buoyancy ( = 0.165) roughly equals the
error from neglecting elasticity ( = 0.167).

Next consider the seagrass Thalassia testudinum. Plant properties
(from Luhar and Nepf, 2011; Bradley and Houser, 2009) are =l 0.225*
m, width=10mm, thickness= 0.35mm, = ×E 2.4 109 Pa, and

= 942s kgm−3. Applying the same wave conditions as used above for
Z. marina ( =t 20* s, =u0* 0.3m s−1) yields =L 0.38, =S̃ 0.022,

=˜ 0.0068 (resembling the case of Fig. 3g), and = 0.29. T. testudinum
dimensionless stiffness exceeds that of Z. Marina mainly because of the
shorter T. testudinum stem length [from (20), S is proportional to l*−4; T
testudinum's higher Young's modulus also played a role]. For steady
flows =B 0.38, indicating a small but non-negligible role for buoyancy.
In contrast, =˜ 0.046, suggesting that buoyancy plays very little role
under unsteady wave orbital velocities. This is confirmed by direct
numerical evaluation of elastic and buoyant forces (rms buoyant
force= 0.047×rms elastic force). Next consider lower-energy waves
( =u 0.020* ms−1, =t 1.330* s), comparable to those observed in the field
by Bradley and Houser (2009). Now =L 8.5, =S̃ 0.22, =˜ 0.068,

= 0.51. Owing to the greatly reduced drag in these lower energy
conditions, stems are now able to resist bending more effectively. Given
observed stem density (1100 stems/m2) and depth (1m), modifying a
standard formula for attenuation of waves propagating over a rigid
canopy (Henderson et al., 2017) to reduce dissipation by the factor

= 0.51 yields the prediction that waves propagate a distance =x 840*
m before their height is halved. This is in agreement with the observed

=x0* 54–103m (inferred from Fig. 2 of Bradley and Houser, 2009),
although uncertainty about vegetation properties precludes a more
rigorous test.

MH10 simulated dissipation by the sedge Schenoplectus americanus,
with typical =l 0.6* m, =r 20* mm, = ×E 3 10*

8 Pa, =t 20* s, and
=u 0.10* ms−1. Assuming = 700s kgm−3, it follows that =S 0.18 and

= 0.1. For such moderate flexibility stems, bending is not confined to
a SBL, but instead extends along the stem's full length. It follows that
the ratio of buoyant and elastic terms is not = S 1/2 , as it would be in
the SBL limit, but instead is of order = =S B 0.561 . Direct calculation
confirms a small but non-negligible role for buoyancy (rms buoyant
term 0.33×rms elastic term). Therefore, the MH10 assumption of
negligible buoyancy may not be justified for this case. However, a small
buoyant force does not greatly modify stem behaviour (e.g. compare
Fig. 3e and f), likely explaining the good fit between observed stem
bending and the elastic theory found by MH10 (an error in the MH10
estimate of E*, which was chosen to fit observations, is likely). Buoy-
ancy also has little effect on dissipation: = 0.459 for the observed S
and β, whereas = 0.457 if β is reset to zero (in contrast, resetting S to
zero yields substantial errors, with = 0.16). For the observed stem
densities (about 300 stems/m2), the predicted = 0.459 was consistent
with observed attenuation of waves propagating through the sedge
canopy (Riffe et al., 2011).

Fig. 5. Dimensionless depth-integrated wave dissipation = (dissipation for
flexible stem)/(dissipation for equivalent rigid stem), versus stiffness S and
buoyancy β. Color and solid contours: Numerical simulations. Dashed contours:
approximate empirical formula (49) (the α value corresponding to each dashed
contour equals the α value of the closest solid contour). Buoyancy dominates
over elasticity above and to the left of the grey line marking = S1/2, whereas
elasticity dominates over buoyancy below and to the right. [can be greyscale for
print version]. (For interpretation of the references to colour in this figure le-
gend, the reader is referred to the Web version of this article.)
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Pneumatophores of the mangrove Sonertia alba provide an example
of nearly rigid stems. We assume =t 20* s, =u 0.30* ms−1, =l 0.15* m,

=r 50* mm, = ×E 8 10*
9 Pa, and = 660s kgm−3 (Zhang et al., 2015).

Now =L 0.25 and =L(2 ) 0.641 , suggesting that the small tilt ap-
proximation would not be very accurate if stems were very flexible.
However, owing to near-rigidity ( = ×S 6.5 103, = 0.37), predicted
l /* (maximum X )* , so tilt is small. Drag is essentially equivalent to the
rigid case ( = 1.00, to 3 s.f.).

The giant kelp Macrocystis pyrifera provides an example of a buoy-
ancy-dominated case. Since these plants grow in coastal environments
exposed to energetic long-period waves we take =t 120* s, =u 1.00*
ms−1. Neglecting complex geometry, we model stipe bundles as cy-
lindrical ‘stems’ with =l 15* m, =r0* 1 cm, = ×E 1 10*

7 Pa, and = 595s
kgm−3 [these properties chosen for consistency with Utter and Denny
(1996) and Koehl and Wainwright (1977), with artificially low ρs∗
chosen to yield a total buoyant force equal to the combined buoyant
force of realistic stipes, blades and pneumatocysts]. Entanglement be-
tween stipe bundles sometimes occurs, but is neglected here. For this
highly flexible case ( = ×S 1.2 10 6, = ×1.6 10 2) with = 15, a
buoyancy-dominated SBL is expected to extend about =l3.23 6.11/2

* m
above bed. The low S and β partly result from the long stem length,
with the exceptionally low Young's modulus also playing a role (Koehl
and Wainwright, 1977). For cylindrical stems, elastic forces would
become important within an inner boundary layer extending about

=S l( / ) 0.131/2
* m above the bed. However, within this small distance

of the bed the cylindrical approximation may become inaccurate, as
stems spread to form a wide holdfast with complex geometry. Since

=L 1.25, stem tilt would be small [order =L(2 ) 0.131 ] if bending
were spread along the full length of the stem. However, bending is in
fact concentrated within the SBL, where tilt is about

=u t /[2 (SBL thickness)] 0.310* 0* . Therefore, much greater u t0* 0* would
violate the small-tilt approximation. For these highly flexible stems

= 0.0637, consistent with the minimal dissipation observed in the
field (Elwany et al., 1995). Neglecting elasticity entirely would have
little effect on predicted dissipation ( = 0.0634 if S is reset to zero
while holding β constant), whereas neglecting buoyancy would lead to
substantial errors ( = 0.023 if β is reset to zero while holding S con-
stant).

Mullarney and Pilditch (2017) measured tilts along the lengths ofM.
pyrifera stipe bundles exposed to natural waves, with u 0.20* ms−1,

=l 2.2* m, dominant swell period =t 90* s (other kelp properties taken
as above). Resulting = ×S 9.5 10 3, = 0.41 and = 0.34, so we expect
a buoyancy-dominated, partially flexible case resembling Fig. 3i, with
relatively large stem tilts near the bed. Near the stem's free end, mea-
sured tilts often exceeded 90∘ from vertical, possibly owing to proximity
of the water surface, so results from the uppermost instrument will be
excluded from the following discussion. Among remaining measure-
ment locations, at swell periods, stem tilts were greatest near the bed,
consistent with theory. Conversely, at longer infragravity periods
(nominally 64 s), tilt fluctuations were relatively uniform along the
stem, with a slight reduction near the bed (excluding the topmost
sensor). To explain this observation, we re-consider scaling for the case
of a low-energy infragravity-frequency motion in the presence of more
energetic swell. We redefine u0*, t0* and W0* to be representative of in-
fragravity motions. Scaling now proceeds as in Section 2, with the ex-
ception of ũ*, which is scaled by the amplitude of the dominant swell-
frequency motion (following Lowe et al., 2007; Mullarney and
Henderson, 2010). Analysis then yields =S t t S( / )ig ig sw* * and

= t t( / )ig ig sw* * , where tig* and tsw* are respectively infragravity and
swell periods, S and β are dimensionless stiffness and buoyancy for
swell frequency motions (as calculated above), and Sig and ig are di-
mensionless stiffness and buoyancy for infragravity frequency motions.
Resulting = ×S 6.8 10ig

2 and = 3ig , suggesting low-frequency beha-
viour resembling Fig. 3f (although stiffness may not be entirely negli-
gible, causing a small reduction in near-bed tilts). Predicted infragravity
tilt fluctuations are non-longer maximum near the bed, consistent with

observations. Flexibility of blades attached to the ‘stipes’ (i.e. the pri-
mary stems), neglected here, may also influence the observed beha-
viour (Mullarney and Pilditch, 2017). Nevertheless, the observed qua-
litative frequency-dependence of kelp tilts is consistent with the simple
analysis presented above. This case also illustrates the importance of
low frequency motions to stem displacement and dissipation (c.f.
Stevens et al., 2001). Since >ig , the model predicts that the ratio
(stem displacement)/(water particle displacement) is smaller at infra-
gravity frequencies than at incident frequencies. However, since water
particle displacements depend on frequency, this does not imply that
infragravity stem displacements are smaller than incident-frequency
stem displacements. Incident waves were an order of magnitude more
energetic than infragravity waves, but water particle displacements
scale with velocity×period, and displacements of water particles at long
infragravity periods (∼6 m) were larger than displacements at shorter
swell periods (∼0.3 m). Consequently, although >ig , the predicted
infragravity-period stem displacement (∼6 m/ = 2ig m) exceeds the
predicted swell-period stem displacement (∼0.3 m, using Fig. 3i).
These predictions are consistent with observations of order-one stem tilt
fluctuations at infragravity periods, with smaller fluctuations at in-
cident periods.

Although the above discussion focused on positive buoyancy as a
factor preventing stem bending, the model equations remain applicable
for plants with negative buoyancy (e.g. some Turbinaria ornata, Stewart,
2006), so long as stiffness is sufficient to prevent large stem tilts.
Comparison with classical analysis of the self-buckling beam problem
(Greenhill, 1881) shows that a negatively buoyant stem in still water
can support its own immersed weight when S| / | 1, but will collapse
when S| / | 1 (note =S B| / | | |).

Assumptions of depth-uniform flow and small stem tilt were
adopted in the above discussion. The depth-uniform flow assumption is
examined in Appendix B. The remainder of this section is devoted to
examining the limits of the small tilt approximation.

The small-tilt approximation will often be justified when L 1.
Nevertheless, considering the examples above, the S. alba case indicates
that L 1 is not always necessary for validity of the small tilt ap-
proximation, while the M. pyrifera case with =l 15* m and a well-de-
veloped stem boundary layer indicates that L 1 is not always suffi-
cient. We can generally assess small tilt approximation from known S
and β as follows: if S 1 and/or 1, then tilt is small if

×L S2 max( , ) 1, [here A Bmax( , ) denotes the maximum of A and
B]. Otherwise, tilt is small if ×L S2 max(3.92 , 3.23 ) 11/4 1/2 .

8. Summary and discussion

The model (17) can simulate stem motion and wave dissipation for a
variety of stem geometries and depth-dependent flows. However, to
highlight qualitative behaviour and emphasize key dimensionless
parameters, analysis here has focused on the simple case of constant-
diameter stems in depth-uniform flows. The model, representing a
balance of elasticity, buoyancy and drag, predicts bending along the
length of a stem. Predicted stem motion depends on hydrodynamic
parameters (amplitude and period of velocity fluctuations) and stem
properties (the stem's Young's modulus, density, length, and radius). A
key result is that the ratio between water and stem displacements is
controlled by new dimensionless buoyancy parameter β (equations 21
and 19), in addition to the stiffness parameter S (equations 20 and 18)
considered by previous researchers. When S 1 or 1 stems move
much less than surrounding water particles (Fig. 3a–c), whereas stem
and water motions become comparable where S and β are order-one
(Fig. 3d–f). For S 1 and 1 stems are highly flexible, with stem
bending concentrated near the seabed (Fig. 3g–h and 4a–c). In such
highly flexible cases, the relative magnitude of buoyant and elastic
forces scales with S 1/2 (Section 5). For the simple cases simulated,
closed-form algebraic expressions (47), (49) provide a good approx-
imation of mean depth-integrated wave dissipation across the full range
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of β and S. These expressions are sufficiently simple for application to
field cases, or for incorporation in wave propagation models. Applica-
tion to a range of natural vegetation (Section 7) suggests only a small
role for buoyancy in some seagrass and sedge cases, for which a com-
plete neglect of buoyancy would often lead to minimal error in simu-
lated wave dissipation. In contrast, as expected, buoyancy plays a
dominating role in giant kelp, for which complete neglect of elasticity
would lead to minimal error in simulated wave dissipation.

Key model assumptions include large Keulegan-Carpenter number
(Kc) and small stem tilt. The large-Kc condition ensures that inertia is
negligible. Analysis of inertial effects is beyond the scope of this paper,
but the large-Kc condition is often met by highly flexible stems. Some
cases satisfy the small-tilt approximation, such as giant kelp under
moderate waves, and many seagrasses under the short-period low-en-
ergy waves common in estuaries. In contrast, large tilts will be more

frequent for smaller kelp, and for both seagrasses and giant kelp under
some higher-energy conditions. For the case of negligible buoyancy,
previous observations (Mullarney and Henderson, 2010; Riffe et al.,
2011; Luhar and Nepf, 2016; Luhar et al., 2017) have established model
skill, even in cases where tilts are not small. For the buoyancy-domi-
nated case, model predictions are qualitatively consistent with existing
field observations of kelp motion (Mullarney and Pilditch, 2017), but
further experiments will be required to develop more quantitative tests
of model accuracy.

The theoretical range of applicability of the model developed here,
and its relationship to previous work, is summarized in Table 2. The
theory developed here applies for most cases with large dimensionless
length L (which usually corresponds to small tilt cases), whereas pre-
vious steady-flow analysis (Luhar and Nepf, 2011) may apply for cases
with small L (Luhar and Nepf, 2016). Therefore, simple dissipation
scalings, applicable for any combination of buoyancy and elasticity,
have now been developed for both small- and large-L limits. For tran-
sitional cases with L 1, further work will be required to determine
whether behaviour is intermediate between large- and small-L cases, or
whether new physics will arise. Additional work may also be required
to develop models for vegetation with complex, branching geometry.
Nevertheless, qualitative model predictions were encouraging for the
case of giant kelp, despite the contrast between the simple geometry of
modeled stems and the complex geometry of the natural vegetation.
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Appendix A. Alternative expressions for depth-integrated dissipation

Viewed from a frame of reference moving with the stem, dissipation appears to be u u f( )s D* , whereas viewed from a fixed frame, dissipation is
u fD* . We will show that, when depth-integrated and time-averaged, these two expressions are equal for the model used here.

First note that = +u f u u f u f( )D s D s D* * . Therefore, we must show that =u f dz 0l
s D0 *

* , or in dimensionless variables =u f dz 0s D0
1 .

Physically, we are showing that no significant mean work is done on the solid, so all dissipation occurs within the water. Here the dimensionless
force

= =f ru u u ru W X t˜ ( ) ˜ ( )/D s (A.1)

equals the right of (17). Multiplying both sides of (A.1) by =u X t/s , depth-integrating, time-averaging, and using (17) yields

= +u f dz D D ,s D S0

1

(A.2)

where

=D S X
t z

I X
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2 (A.3)
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(A.4)

It remains to show that =D 0S and =D 0. Integrating (A.4) by parts yields

= + +
= =

D X
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t z
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z z1 0
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1 2
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(A.5)

The first term is zero because ==| 0z 1V , the second term is zero from (22), and the integrand in the third term is

= =X
z t

X
z t

X
z2

0,
2

V
V

(A.6)

where the last equality follows from periodicity of the motion.
The result =D 0S follows in a similar manner after integrating by parts twice and applying boundary conditions.

Table 2
Summary of scalings for dissipation under quasi-steady (L 1) and small tilt
(L 1) limits in cases where bending is resisted by elasticity, buoyancy, or
both elasticity and buoyancy. Previous theories presented by DE08: de Langre
(2008); LN11:Luhar and Nepf (2011); NE98: Nikora et al. (1998); MH10:
Mullarney and Henderson (2010). Question marks indicate cases for which no
simple scaling has yet been developed.

L 1 L 1 L 1

quasi-steady transitional small tilt

Elastic DE08 ? MH10
Elastic + Buoyant LN11 ? This paper
Buoyant NE98 ? This paper
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Appendix B. The depth-uniform flow approximation

Using the cases outlined in Section 7, we examine the accuracy and limitations of the depth-uniform flow approximation. For cases with =t 20* s,
even in just 2m depth, near-bed velocity is smaller than near-surface velocity by a factor of =k hcosh( ) 4* * , where =h* water depth and

=k 2 /wavelength* (here calculated from linear wave theory). In contrast, velocity is attenuated from the top to the bottom of Z. marina by only a
factor of =k lcosh( ) 1.09* * (i.e. 9% attenuation). Therefore, it is important to account for depth-attenuation over the full water depth, but the neglect
of vertical attenuation within the canopy is justified. Next consider the M. prifera case with a 15-m-long stem, assuming water depth of 16m, and
take =t 90* s. Now =k 0.064* m−1, =k hcosh( ) 1.6* * , and =k lcosh( ) 1.5* * , indicating substantial variability over the depth and along length of stem.
However, we know from the small S and β values that the stem can easily bend along its full length to accommodate this variability, so substantial
differences between water and stem velocities are again confined to an SBL, with the appropriate u0* being the nearbed value (within the SBL,
velocity varries only 4%, so the depth-uniform flow approximation is valid). Finally, consider giant kelp with shorter period 3 s waves (holding other
factors constant). Now =k 0.45* m−1, and =k hcosh( ) 640* * , indicating very little nearbed flow since these short waves are essentially in deep water.
Since flow in SBL is negligible, scalings based on SBL dissipation are invalid. Flow is almost completely attenuated along length of stem
[ =k lcosh( ) 430* * ]. Furthermore, the length scale for depth attenuation of flow is now =k 2.2*

1 m. Therefore, scaling (7) is inappropriate and the
vertical coordinate should be rescaled using the scale k*

1. Although full analysis is beyond the scope of this paper, we briefly note that such scaling
(with =z k z* *), leads to modified values = ×S 5 10 3 and = 0.16. Such values indicate that buoyancy, although insufficient to resist bending of the
stem along its full length, is sufficient to weakly resist the near-surface bending imposed by the depth-dependent flows of these short period waves.
Kelp may therefore allow passage of long period waves while damping short waves (similar behaviour was noted for elastic sedge by MH10). Depth-
variability of velocity introduces two new dimensionless parameters (k h* * and k l* *), and evaluation of the full range of possibilities is beyond scope of
this paper. However, we note that cases with depth-dependent flows can be solved numerically, or analytically by representing the vertical structure
as a sum of normal modes (adapting approach of MH10 to account for buoyancy).

Appendix C. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.coastaleng.2019.04.009.
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