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Abstract

When submerged, flexible vegetation bends back and forth under waves, and stems
are tilted only a small angle from vertical, simple models for stem motion and wave
dissipation can be derived. Here, previous simple models for the wave-induced
bending of elastic vegetation are extended to account for buoyancy. Buoyancy
results in stem tension which, together with fluid drag, is incorporated in the
FEuler-Bernoulli problem, in which each stem is modeled as a cantilevered elastic
beam. Solutions are governed by a new ‘dimensionless buoyancy’ 3, in addition
to the ‘dimensionless stiffness’ S identified by previous researchers. If § < S/2,
buoyancy is negligible and previous results for elastic stems are recovered. Specif-
ically, stems are nearly immobile for S > 1, but for S < 1 stems move with
surrounding water except in a thin ‘elastic boundary layer’ extending a distance
S1/41, above the bed, where I, =stem length. Conversely, if 3 > S/2, then elas-
ticity is negligible along most of the length of the stem and new behaviour is found.
Specifically, stems are nearly immobile for 8 > 1, but for § < 1 stems move with
surrounding water except in a thin ‘buoyant boundary layer’ extending a distance
/21, above the bed. For essentially inflexible cases (S > 1 or 8> 1), simulated
depth-integrated wave dissipation roughly equals the value D, predicted for rigid
stems. For highly flexible cases (i.e. for S and § both <« 1), dissipation is limited
to elastic or buoyant boundary layers, and therefore scales with the maximum of
SYAD, and BY2D,. For the simple stems considered here, which have constant
diameter and density, simulated dissipation for all S and § was approximated by
the expression [(S + 3%/4)/(4+ S + £2/4)]"/*D,. This simple formula may require
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modification for vegetation with complex geometry. Nevertheless, this analysis
identifies 8 as a key parameter for inclusion in dissipation formulations, together
with parameters such as S identified by previous authors.

Keywords:
Flexible vegetation, Wave dissipation, Oscillatory flows, Kelp, Seagrass,
Fluid-solid interaction




Highlights

e Dissipation is predicted for waves propagating through flexible vegeta-
tion.

Force-balance model analyzed for small-tilt motion of buoyant, elastic
stems.

e New dimensionless buoyancy quantifies buoyant resistance to oscilla-
tory motion.

A simple expression approximates depth-integrated wave dissipation.

Results may aid assessment of coastal protection by wetlands.

1. Introduction

Flexible vegetation canopies are widespread in lakes, estuaries, and coastal
oceans. Examples include saltmarshes, kelp forests, and seagrass mead-
ows. Aquatic vegetation provides numerous ecological and economic benefits
(Brander et al., 2006; Greenberg et al., 2006; Gren, 1995; Siikaméki et al.,
2012). In a world of rising sea levels, the ability of aquatic vegetation to
provide coastal protection, by sheltering coastlines from energetic waves, has
drawn particular attention (Arkema et al., 2013; Broekx et al., 2011; Feagin
et al., 2015; Jones et al., 2012; Méller et al., 2014; Temmerman et al., 2013).
Here, a model is developed to quantify the dissipation of waves by flexible
vegetation.

Wave dissipation can be intense in some vegetation canopies (Jadhav
et al., 2013; Riffe et al., 2011), but can be greatly reduced if stems are suf-
ficiently flexible to move with the surrounding water (Elwany et al., 1995;
Koehl, 1984; Rosman et al., 2007; 7). Consequently, models for dissipation by
rigid vegetation (Dalrymple et al., 1984; Henderson et al., 2017; Lowe et al.,
2005) must be modified when vegetation is flexible. Empirical models have
been developed by fitting measured dissipation in flexible canopies to func-
tions of the Reynolds number R, = wg.7./v. and the Keulegan-Carpenter
number K, = wug.to./(2r.), where up, =amplitude of velocity fluctuations
near the seabed, r, =stem radius, v, =kinematic viscosity, and tp, = wave
period (Augustin et al., 2009; Blackmar et al., 2014; Bradley and Houser,
2009; Jadhav et al., 2013; Kobayashi et al., 1993; Mendez and Losada, 2004).
Resulting empirical formulas yield good results when tuned for a specific
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species and growth stage, but do not explicitly account for many of the pa-
rameters influencing stem motion, including stem length, Young’s Modulus,
and buoyancy. These unaccounted-for parameters differ between plants by
orders of magnitude (e.g. for stem lengths compare Utter and Denny (1996)
with Bradley and Houser (2009), and for Young’s modulus compare Utter
and Denny (1996) with Zhang et al. (2015)) or sign (e.g. for buoyancy see
Stewart (2006)). Consequently, differing R.- and K -based formulations are
required for differing species (Mullarney and Henderson, 2018).

As an alternative to empirical parameterization, models can be developed
from an understanding of coupled fluid-solid mechanics. For steady currents,
extensive research has identified key parameters quantifying the balance be-
tween the forces of fluid drag, elasticity, and buoyancy. The dimensionless
Cauchy number C, controls stem bending when elastic and drag forces bal-
ance, with minimal bending when C, < 1, and order-one stem tilt when
C, = 1 (for definitions of C, and other variables, see table 1). For C, > 1,
bending is concentrated along a small near-bed section of the stem, with the
remainder of the stem almost aligned with the flow. A dimensionless buoy-
ancy parameter, denoted P by Nikora et al. (1998), controls bending when
buoyant and drag forces balance, with minimal bending when P < 1 (the
relative importance of buoyancy and elasticity is controlled by the parameter
B ~ C,/P, Luhar and Nepf, 2011, where ‘~’ indicates equality except for an
order-one constant).

For oscillatory flows under waves, comprehensive numerical models have
been developed to simulate stem motion (Luhar and Nepf, 2016; Utter and
Denny, 1996; Zeller et al., 2014). When stem tilts are small, equations for
drag and stem bending can be approximately linearized and analytic solutions
can be obtained. Mullarney and Henderson (2010) (hereafter MH10) found
analytic solutions for the case of negligible stem buoyancy. Here, the MH10
model is extended to account for buoyancy.

The model of MH10 highlights the importance of a ‘dimensionless stiff-
ness’ S. This stiffness quantifies the competing effects of elastic stresses,
which resist stem bending, and fluid drag, which acts to bend stems. For
S > 1 stems are nearly rigid, whereas for S < 1 stems mostly move back
and forth with surrounding water. However, attachment to the bed lim-
its the near-bed motion of even the most flexible stems. Consequently, for
S < 1, theory predicts an ‘elastic boundary layer’, extending a distance
S1/41, above the bed, within which elastic forces cause substantial differences
between water and stem motions [this elastic boundary layer, where elastic
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forces acting on stems are substantial, differs from the familiar wave bottom
boundary layer (hereafter WBBL), where shear stresses acting on the wa-
ter are substantial]. Since wave dissipation requires relative motion between
stems and surrounding water, simulated dissipation in highly flexible vegeta-
tion is limited to the elastic boundary layer, and depth-integrated dissipation
is reduced from the rigid value by a factor of order S*/* [hereafter denoted
O(SY%)]. In laboratory experiments, Luhar et al. (2017); Luhar and Nepf
(2016) found that dissipation in canopies of flexible artificial vegetation was
consistent with this scaling over a wide range of S, even for moderate stem
tilts. In field experiments, Riffe et al. (2011) found that bulk wave dissipa-
tion within a natural canopy of moderately flexible sedge was also consistent
with MH10 theory.

Luhar and Nepf (2016) presented an insightful explanation for the rela-
tionship between the Cauchy number C,, governing elastic bending under
steady flows, and the dimensionless stiffness S, governing oscillatory flows.
For steady flows, leading-order drag reduction occurs as stems are bent flat,
which requires horizontally displacing the stem tip a distance comparable to
the stem length [,, with transition to this behaviour occurring as C, becomes
greater than 1 (Figure la). In contrast, for oscillatory flows, stems need not
bend flat for major drag reduction to occur (Figure 1b). Instead, drag reduc-
tion in oscillatory flows can occur when the stem is displaced a distance com-
parable to the ‘orbital displacement scale’ Wy, with such bending occurring
when S is less than about 1 (neglecting a factor of 7, discussed below, Wy, is
the distance water particles move back-and-forth under waves). Therefore,
when Wy, < [, much less bending is required for leading-order drag reduc-
tion under waves than under currents. In terms of the ‘dimensionless stem
length’ L = [, /W, this result can be restated in a more quantitative man-
ner: When L > 1, leading-order drag reduction requires order L less stem
displacement under waves than under steady currents. Since elastic forces
are roughly proportional to stem displacement, this suggests S ~ (C,L)7!,
as was confirmed by Luhar and Nepf (2016).

The scaling arguments of Luhar and Nepf (2016) neglected buoyancy.
However, we note that adapting their reasoning for buoyancy-dominated
cases suggests that bending is controlled by a ‘dimensionless buoyancy’ § ~
(PL)~!. For oscillating flows with negligible elastic stiffness, detailed analy-
sis below confirms that stem bending is indeed controlled by 3. Specifically,
stems move much less than surrounding water particles when 3 > 1, whereas
stems move with surrounding water except in a near-bed ‘buoyant boundary
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Figure 1: Drag reduction mechanisms in flexible vegetation. For small dimensionless length
[panel a, L < 1, where L = (stem length)/(water particle displacement)], drag reduction
occurs when an initially vertical stem (light green line) is bent (dark green curve) by
water velocity u., so that water over a range of elevations (labeled A) does not experience
vegetation drag. For this mechanism to yield leading-order drag reduction, stem tilts must
be order-one, so the horizontal stem displacement X, must be comparable to the stem
length I.. For large dimensionless length (panel b, L > 1), a different drag reduction
mechanism operates. Specifically, as water particles are displaced alternately left (vertical
dashed blue line labeled 1) and right (dashed blue line 2), a sufficiently flexible stem is
displaced alternately left (dark green curve 1) and right (light green curve 2), so that
the upper portion of the stem moves with surrounding water. Drag on the stem’s upper
section is then reduced, because water motion relative to the stem is reduced. For this
mechanism to yield leading-order drag reduction, the horizontal stem displacement X,
must be comparable to the water particle displacement (i.e. order-Wy,), so stem tilt must
be order Wo./l, = L™! < 1. This small tilt required for drag reduction when L > 1
(panel b) contrasts with the order-one tilt required for drag reduction when L < 1 (panel
a), accounting for an order-L difference between dimensionless parameters governing drag
reduction in the two cases. Note that the drag-reduction mechanism of panel b cannot
apply when L < 1, because stems are then too short to move with the surrounding water.
Furthermore, the mechanism of panel a cannot apply when L > 1, because water particles
then do not move sufficiently to generate order-one tilt.




layer” when < 1.

This paper presents models for bending along the length of a continuous
stem, neglecting stem inertia. This approach contrasts with some previous
models for buoyant vegetation, which represented inertia, drag and buoyancy
as if they acted at a single point, attached to the seabed by a thin, straight,
non-buoyant rope (Denny and Gaylord, 2002; Denny et al., 1997; Stevens
et al., 2001; Utter and Denny, 1996). When inertia is neglected, we show that
vegetation motion in these previous ‘buoy on rope’ models is also governed
by . However, such models do not resolve motion along the length of a
continuous stem, and do not resolve the buoyant stem boundary layer.

We start by simplifying and non-dimensionalizing equations previously
used for numerical modeling of elastic, buoyant stems (Luhar and Nepf, 2016)
for the case of small stem tilts (Section 2). Resulting scaling parameters are
compared with parameters governing previous steady-flow and buoy-on-rope
models (Section 3). Solutions are presented for depth-uniform flows (Sec-
tion 4), considering in turn nonlinear numerical simulations (Section 4.1)
and linearized analytic solutions (Section 4.2). For small S and [, bound-
ary layer solutions reveal that the buoyant boundary layer thickness scales
with 821, (Section 5). To facilitate the development of models for practical
applications, we show that depth-integrated wave dissipation is well approx-
imated by a straightforward function of S and f in the case of simple stem
geometries (Section 6). Applications and limitations of analysis are illus-
trated by considering a range of natural vegetation (Section 7) and results
are summarized (Section 8).

2. Model equations and scaling

Four forces acting on stems will be considered:

1. The elastic shear force V, (i.e. the elastic shear stress integrated over
the stem’s cross-sectional area), which resists stem bending. From
Euler-Bernoulli theory for the bending of thin beams (e.g. Luhar and
Nepf, 2016; Niklas, 1992), V, = —0/0s.(E,1,00/0s.), where s, = along-
stem distance measured from stem base, § = stem tilt from vertical (in
radians), £, = Young’s modulus, and the second moment of stem area
I, = f x2dA,, where y, =distance in flow direction from center of
stem, and the integral is taken over the stem’s cross-section (for cir-
cular cross-section, I, = 7r?/4, where r, =stem radius, Niklas, 1992).
Throughout, stars indicate dimensional variables.
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2. The upward buoyant force per unit length of stem

fb* — ,O*b*A*, (1)

where the stem buoyancy b, = g.(ps—pss)/ s, g« = 9.8 ms™2, p, = water
density, pss =stem density, and A, =stem cross-sectional area.

3. The stem tension force T, which, for small stem tilts, will balance stem
buoyancy.

4. The drag force per unit length of stem fp.. Stems that are susceptible
to bending by waves often have diameters much less than the orbital
displacement (e.g. for seagrasses, sedges, and kelp, stem diameters
often range from 0.8 -2cm, while in estuaries and the coastal ocean,
orbital displacements often range from 10—200 cm, Section 7). There-
fore, we assume a large Keulegan-Carpenter number K.. This large
K. suggests negligible acceleration-dependence of drag (Mullarney and
Henderson, 2018; Sumer and Fredsge, 1997; Zeller et al., 2015), leading
to

fps = 12pCplUs Uy — Uy (2)

where C'p is a drag coefficient, u, and ug, are time-dependent water and
stem velocities, and in fully nonlinear drag formulations @, = |u, — |
where vertical bars (| - |) denote absolute value. Analytic solutions will
be obtained by linearizing this expression for drag following Borgman
(1967); Henderson et al. (2017); Jadhav et al. (2013); Lowe et al. (2007);
Mullarney and Henderson (2010). In this linearized formulation, we
replace time-varying u, with a time-constant value. It will prove con-
venient to express this constant value in terms of a parameter &, which

is defined such that 8

3T
This expression is chosen because, for sinusoidal velocity fluctuations
and rigid stems (ug = 0), the mean squared error between linear and
nonlinear drag parameterizations is minimized by setting & = 1. For
mobile stems, the optimal £ will be found by model tuning to be slightly
less than 1 (likely because |u. — ug| < |u.| when stem motions follow

water motions).

Neglecting stem-parallel skin friction and terms of order K (which in-
clude Froude-Krylov force, added mass, and stem inertia), the stem momen-
tum equation (e.g. Luhar and Nepf, 2016, their equation 7) reduces to the
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force balance

s [(V, +iT)e ] +ifp + foee ™ =0, (4)

where the real and imaginary components respectively represent horizontal
and vertical forces.

For small stem tilt (f < 1), the along-stem derivative 0/0s, can be ap-
proximated by the vertical derivative 0/0z. (z, measured upwards from the
bed), with neglected error O(6?) [where O(#?) indicates a term of order 6?].
Furthermore, elastic and drag forces are almost horizontal [vertical compo-
nents O(#)], and can be neglected in the leading-order vertical component
of (4). Integrating the imaginary component of (4) from any elevation z, to
the stem tip (where T, = 0), neglecting contributions from vertical elastic
and drag forces, and applying (1) then yields the leading-order vertical force
balance

T, = pb.Vis, (5)

where V, = le* A, dz, is the stem volume above z,. Therefore, at leading
order, stem tension balances buoyancy. Taking the real part of (4), noting
that e = 1 — i + O(6?), and neglecting O(6?) terms, yields the leading-
order horizontal force balance

B 0*(E,1,00/0z,) N o(T.0)
0722 0z

+ fp« = 0. (6)

Although buoyancy does not directly exert a horizontal force, it is responsible
for stem tension (5), which can exert a horizontal force when stems tilt
[second term of (6)]. If elastic forces (first term) are negligible, (6) is a
vertically inverted form of the classic oscillating, hanging chain problem (e.g.
problem 24.4 of Simmons, 1972). If buoyant forces are negligible, (6) is the
model of MH10.

To clarify the magnitude of terms in (5)—(6), introduce the dimensionless
variables

z =2z,/l, (7)
T =T/ T0x, (8)
I =1./I., (9)
V =V, Vos. (10)



where r¢,, Ip. and Vy, are typical magnitudes of r,, I, and V,. For simple
stem geometries (e.g. nearly cylindrical stems), we choose to scale I, and V,
with
Iy. =70, (11)
Vou =73 L. (12)

Let t, be time, let X, and W, be horizontal stem and water displacements,
and let corresponding dimensionless variables be

t =t /tos, (13)
X =X, /W, (14)
W =W, /W, (15)
where
WO* - UO*tO*- (16)

For sinusoidal waves, Wy, defined by (16) is a factor of 27w greater than
the amplitude of water particle displacements. Further define u = w, /uo,
Us = Ugi/Ugs and U = Ty /Ups, so nonlinear and linear drag formulations re-
spectively yield 4 = |u—us| and @ = 8£/(37). Assume simple stem geometry,
so that (11) and (12) apply. Now noting that  ~ 0X,/0z, and combining
(5)—(6) yields the governing equation for buoyant, elastic stem motion:

0* ([ 9°X 0 0X _O(W — X)
S (15 ) 052 (V52 ) =i 1)
where we have used u — uy; = (W — X)/0t, the dimensionless stiffness

(previously defined by MH10) is

E 7”3 to
S = OO 18
p*OleU0*7 ( )

and the dimensionless buoyancy (not identified by previous researchers) is

b*TO*tO*

b=

. 19
ODZ*UO* ( )

For more complex stem geometries, S and 3 in (17) are replaced by

E*]O*tO*
/)*CleTO*UO* 7

S = (20)

10



and
= b* VO*tO*

B = (21)

CleTo*Uo*7
where we take rg, as half the stem width in the direction normal to the flow.
We will present results for cylindrical stems in terms of S and 8, but for
more complex geometries, S and (3 are preferred (Section 6).

Boundary conditions at the bed are

X|.=0 =0, (22)
0X
=1 =0 2
0z |, 0 (23)

Boundary conditions at the stem tip are

0?X

-0, (24)
022 |,_,
PX
il (Y (25)
623 z=1

The model (17), (22)—(25) is equivalent to the model of MH10, except for
the addition of buoyancy-induced tension [second term on the left of (17)].

By inspection of (17), for S > 1 or f > 1, elasticity or buoyancy is
sufficient to prevent almost all stem motion (X < 1). Conversely, for S < 1
and 8 < 1, stems must move with the surrounding water along much of the
stem length (so |IW — X| <« 1). Satisfaction of (22) by very flexible stems
then requires a near-bed Stem Boundary Layer (SBL) where elasticity and /or
buoyancy become significant.

3. Comparison with previous scaling parameters

The parameters S and [ governing small-tilt oscillatory stem motion are
related to parameters governing stem bending under steady flows (Section 1).
Specifically, under steady flows, stem bending is controlled by the Cauchy
number (de Langre, 2008)

2 73
_ p*TO*UO*l*

Ca ;
E*]O*

(26)
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and the buoyancy parameter (Nikora et al., 1998)

Cpug,

P = b (27)
where we have rewritten the Nikora et al. expression in terms of near-bed
velocity, and for simplicity omitted a factor of 7. Comparing (18)—(19) with
(26) — (27) (and neglecting the order-one factor Cp) yields S = (C, L)™' and
B = (PL)™!, as anticipated in Section 1.

An additional dimensionless combination considered by Luhar and Nepf
(2011) is B ~ C, /P, which is roughly the ratio between buoyant and elastic
forces for bending under steady flows. The dimensionless buoyancy (3 is
related to B by 8 ~ BS ~ B(CaL)™'. Therefore, only three of the six
dimensionless variables S, 3, L, Ca, P and B are independent.

Having defined the governing dimensionless parameters, we summarize
the relationship between previous research and the work presented here as
follows: For steady flows Wy, — o0, so L = 0. Therefore, a slowly-varying
form of steady-flow analysis (de Langre, 2008; Luhar and Nepf, 2011) likely
applies in the limit L < 1, as noted previously by Luhar and Nepf (2016).
For L > 1, MH10 analyzed the case § = 0. The original contribution
here is to analyze the L > 1 case for non-zero 3. Of the six dimensionless
variables noted above, only S and [ are considered below, because these yield
the simplest expressions in oscillating flow cases with L > 1. However, if
desired, results can be re-expressed in terms of other parameters such as C,,
P, and L, as was previously done for the elasticity-dominated case by Luhar
and Nepf (2016).

The parameter § also plays a key role in previous buoy-on-rope models
for buoyant vegetation (e.g. Denny et al., 1997; Utter and Denny, 1996).
Under the large- K. approximation discussed above and neglecting vertical
water motion, equation 15 of Utter and Denny (1996) reduces to the force
balance

iT.e™ +iFy, + Fp, =0, (28)

where real and imaginary parts represent horizontal and vertical forces, and
buoyant and drag forces integrated along the length of the stem (Fy, and Fp.)
are treated as if they acted at a single point. From the small-tilt vertical force
balance T, ~ Fyp,. The leading order horizontal force balance is then

oW - X)

/BXZU at )

(29)
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as can be established by noting Fy. = p.b.Vos, Fp. = Lrip.Cpu0(W, —
X,)/0t, and e7 ~ 1 — i ~ 1 —iX,/l,. By inspection, buoyancy prevents
almost all stem motion when B > 1, whereas stems move with surrounding
water (|W — X| < 1) when 3 < 1. Therefore, although previous buoy-
on-rope models of buoyant vegetation accounted for additional physics not
considered here (such as inertia, Denny et al., 1998), these previous models
are governed by the parameter 8 when the approximations considered in this
paper are applied.

4. Motion of Entire Stems in Depth-Uniform Flows

This section presents solutions for cases where the water velocity is nearly
uniform along the length of the stem. This requires that stem length is much
less than (27)~!xwavelength, and that stem length is much greater than
WBBL thickness. Water motion in fact depends on stem friction, potentially
leading to complex depth-dependence of water velocity, but the density of
many natural canopies is sufficiently low that this effect can be neglected
(Dalrymple et al., 1984; Henderson et al., 2017; Lowe et al., 2005). Ana-
lytic solution for arbitrary depth-dependence is possible using normal mode
expansions following MH10, but for simplicity is omitted here.

4.1. Nonlinear drag

Finite difference solutions to (17), (22) - (25) were obtained for sinusoidal
water velocity u = cos(wt), with w = 27 (corresponding to dimensionless
period 1 and dimensional period fj,). A uniformly spaced numerical grid
was used, with 150 time steps per period, and either 100, 200, or 400 vertical
gridpoints (the higher resolutions were used for SBL cases). For each time
step, following the Crank-Nicholson approach (Morton and Mayers, 2005),
elastic and buoyant terms [left of (17)] were evaluated by averaging values
at old and new times, leading to an implicit scheme. The numerical scheme
can incorporate either linear or nonlinear drag. For linear drag, numerical
solutions converge to the analytic solutions given below. For nonlinear drag,
it is neither physically reasonable nor numerically desirable for u to drop to
exactly zero (Trowbridge and Madsen, 1984), so we replaced @ in (17) with
the maximum of  and 0.1. Stem motion was simulated for thirty periods for
stems with round cross-section and constant diameter, and the last period of
motion was selected for presentation below. We chose ¢ = 0 to coincide with
the start of this last period, so that t = 1 at the end of the last period.
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Figure 2: Variation with time ¢ through one wave cycle of horizontal stem displacement
X versus elevation z for three nearly-immobile cases. Forces resisting bending are elastic
(left), buoyant (right) and mixed (center).

As expected, when either S > 1 or § > 1, stem motions were much
smaller than water motions (so |X| < 1, Figure 2). Water velocity and
stem displacement were maximum in the positive x direction at ¢t = 0 or 1,
whereas water velocity and stem displacement were maximum in the negative
x direction at t = 1/2. At ¢ = 1/4 and 3/4 water velocity was zero, and stem
displacement was nearly zero. Since water velocity leads water displacement
by 1/4 of a cycle, it follows that stem displacement leads water displacement
by about 1/4 of a cycle in these nearly-immobile cases (this phase lead is
discussed in the context of the elasticity-dominated case by MH10).

Water motions are perfectly sinusoidal with frequency w, but nonlinear-
ity of the drag formulation leads to small stem motions at odd harmonic
frequencies such as 3w and 5w (nonlinear friction does not generate even
harmonics, see Trowbridge and Madsen, 1984), but the frequency-w motion
accounted for >96% of variance in all cases considered here (not shown).
Given this dominance of frequency-w motion, the relationship between water
and stem motions is conveniently summarized by the elevation-dependent
transfer function

r==>, (30)

where the frequency-w complex amplitudes for stem and water displace-
ment, respectively X and W, were calculated from the final period of sim-
ulated motion by complex demodulation [ie. X = 2 fOIX (t)e ™! dt and
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W =2 fol W (t)e ™! dt]. Positive (negative) real T' indicates stem motion in
(out of) phase with water motion, whereas positive (negative) imaginary I'
indicates stem motion leading (lagging) water motion. For immobile stems
[' = 0, whereas in regions where stems move with surrounding water I' = 1.
For the nearly-immobile stems shown in Figure 2, which move 1/4-cycle
ahead of surrounding water, I" is small and imaginary (solid black and grey
curves Figure 3a-c).

In cases with non-zero S, stem tilt tends smoothly to zero as the bed is
approached (Figure 3a-b), whereas non-zero tilt is maintained even close to
the bed for S = 0 (Figure 3c). Below, it will be shown that stem tilt is small
in a near-bed region whose thickness approaches zero when S approaches
zero (Section 5).

Numerically-derived transfer functions for a range of stiffness and buoy-
ancy values are shown as solid curves in Figure 3a-i. As stems become more
mobile, the component of stem motion in phase with water motion grows
larger (increasing positive real component of I'), until the in-phase and in-
quadrature components are of similar size for order-one S or B (compare
black and grey curves, Figure 3d-f). For S and B well below 1, the upper
parts of stems move almost with surrounding water (I" approaches 1, Fig-
ure 3g-i). As will be discussed further in Section 5, the nearbed region where
water and stem motions appreciably differ (i.e. where I' is substantially dif-
ferent from 1) becomes steadily thinner with decreasing S and .

4.2. Linearized drag

In this section, analytic solutions to (17), (22)—(25) are presented for
the case of linearized drag. These analytic solutions will approximate the
numerical solutions for nonlinear drag (Section 4.1), and will clarify scaling.

Consider sinusoidal motion, so W = (We™* + ¢¢)/2 and X = (Xe™! +
cc)/2, where cc indicates the complex conjugate of the previous term. For
stems with round cross-section and constant diameter [so [ = 7/4 and V =
7(1 — 2)], collecting coefficients of ¢™* in (17) with linearized drag yields

S’ (%) — ﬁ’% {(1 — z)g—z} =i(1-T), (31)

where
S" = 3wS/(64¢), (32)
B = 3rp/(16¢), (33)
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Figure 3: Nonlinear numerical solutions (solid curves) and linearized approximations
(dashed curves) for real (black) and imaginary (grey) components of transfer function
I’ (defined in equation 30) versus elevation z. Dimensionless stiffness S and buoyancy
B, stated in each panel, include (a—c) low-, (d—f) moderate-, and (g—1i) high-flexibility
cases. Restoring forces elasticity-dominated (a, d, g), buoyancy-dominated (c,f,i), or mixed
(b,e,h).

16



and we have used w = 27 and 9(e™*)/0t = iwe™'. Boundary conditions are
obtained by replacing X with I" in (22)—(25).

First consider the elasticity-dominated case. Setting 5 = 0 recovers the
problem considered by MH10, for the special case of depth-uniform water
velocity. The solution is

r=1- (Ileir,z + I2€ifr+z + :L,Se—ir,z 4 5(746_iT+Z) , (34)

where 7+ = —[+(—i/5")/?]'/2 The coefficients z; — x4 are determined from
the boundary conditions, which yield the system of simultaneous equations

Ax=b (35)

where x = [x1, 72, 23, 74]7, b = [1,0,0,0]7, and

1 1 1 1
T_ Ty —Tr_ —Tr4
A= 36
rre= riet  rfe’=  rie "t (36)
3 r— 3,.r4+ _ 3 ,—r— .3 ,—T4
rder= rie rie rie

Now consider the buoyancy-dominated case. Setting S = 0 gives a solu-

tion
Jo{2[-ip 1 (1 — 2)]' %}
Jo{2[=ip 2y
where Jj is a Bessel function of the first kind of order zero. Since (31) reduces
to a second-order differential equation in this S = 0 case, only two boundary
conditions can be satisfied (conditions are (22), and that I'|,—; is finite).
For cases with S and 8 both nonzero, (31) with linear drag was solved
numerically.
The parameter £ in expression (3) for linearized drag was chosen to min-
imize the errors resulting from linearization. Agreement between linear and
nonlinear drag formulations was optimized using the empirical formula

=1

(37)

1 48 + 2
=— |14+ ——. 38
=M oaras i (38)
This expression gives £ = 1 for rigid stems, whereas ¢ drops below 1 as stems
become flexible, as expected [see discussion following (3)]. The choice of £
has only a modest effect on solutions, because £ in (38) never drops below 1/2
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(for the flexible limit), and because £ appears in solutions as only a rescaling
of the vertical axis by a constant £/ or £!/2 [for elasticity- and buoyancy-
dominated cases respectively, from (32), (33), (34) and (37)]. Using (38)
to evaluate &, solutions for linearized drag were found to provide a good
approximation to numerical solutions for nonlinear drag (compare solid and
dashed curves, Figure 3a-i).

5. Boundary layers

For sufficiently small S and (3, the nearbed region where I' departs appre-
ciably from 1 becomes a thin SBL. A boundary layer coordinate appropriate
for negligible buoyancy is (MH10)

z

Ce = - (39)

This coordinate is chosen so that (for f ~ 0), [ =~ 0 for (, < 1 and ' = 1
for (. > 1. A boundary layer coordinate appropriate for negligible stiffness

will prove to be
z

G = g (40)

We first express the SBL solution, accounting for both buoyancy and stiffness,
as a function of (,, and then note how this solution can be rescaled in terms
of (, in the buoyancy-dominated case.

In the SBL, 1 — z &~ 1, so (31) simplifies to

) w

where the importance of buoyancy relative to stiffness is determined by " =
('S’~Y/2. Boundary conditions at the bed are unchanged. Far above the bed,
stems must move with the surrounding water, so

o°T
a—cg : . :0, (42)
o°T
a—cg C . :O (43)

The solution is
roe=te —p_el+e

r=1- , (44)

ry —T—
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Figure 4: Nonlinear numerical solutions (solid curves) and linearized boundary layer ap-
proximations (dashed curves) for real (black) and imaginary (grey) components of transfer
function I versus elevation z. The small values of dimensionless stiffness S and buoyancy g,
stated in each panel, indicate highly flexible stems. Restoring forces elasticity-dominated
(a), buoyancy-dominated (c), or mixed (b). Horizontal grey solid and dashed lines respec-
tively mark z = 3.925%/4 and z = 3.635/2.

where

re =—{y/2£(y/2)* )2}, (45)
For small, moderate, and large 7/, these solutions are shown as a function of
z (using 39) by dashed lines in Figure 4a—c. In the case presented, the SBL
occupies a substantial fraction of the stem. Although (42)—(43) are only
formally valid when the SBL is very thin, the SBL solution still provides
a good approximation to the numerical solution in the cases shown. With
further reductions in .S or 3, the SBL thickness decreases, and the accuracy
of the boundary layer approximation improves further. Near the bed, stem
motions lead water motions by 45 °.

For the elasticity-dominated case ' < 1 (Figure 4a), ry ~ {e'™/8 e=®m/8}
giving a corrected form of the stem boundary layer solution found by MH10
(they erroneously reported ro = {e™"""/8 ¢=®7/81)  As noted by MH10, the
dimensional thickness of this elastic SBL is order S'/l,. To remove ambi-
guity, we define the SBL thickness as the elevation where |I'| is maximum,
which proves to be (. =3.92, or z = 3.925'"/ (solid horizontal grey lines,
Figure 4).

For v/ =1 (Figure 4b), both buoyancy and stiffness influence leading or-
der stem motion, and the boundary layer thickness remains O(S"/ 41,), which
now also equals O(3'/%1,).

For the buoyancy-dominated case 7' > 1 (Figure 4c), r, ~ —q/1/2

and
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r_ m /7127374 From (44) and (40), since |ry.| > |r_.],
Dl —e % =1—e, (46)

where 1, = e /% We again define the SBL thickness as the elevation
where |I'| is maximum, which occurs at ¢, = 3.23, or z = 3.238'Y/2 (dashed
horizontal grey lines, Figure 4).

Although the small term omitted from (46) has little effect on X for
v > 1, it does substantially influence 0.X/0z in an inner boundary layer. This
inner boundary layer is much thinner than the buoyant boundary layer, and is
required to satisfy (23). Within this inner layer of thickness O(y~Y/251/41,) =
O[(S/B)'?1,], both buoyancy and stiffness are significant. Although this
thin inner boundary layer has little effect on stem displacement or wave
dissipation, it may have biological relevance since it influences the stresses
exerted on the plant.

6. Approximation of total wave dissipation

The mean depth-integrated wave dissipation is the vertical integral of

U, fp«, Where the overbar () denotes a time average. This proves to equal

the vertical integral of (u. — us)fp« (Appendix A). Using this result, for

constant diameter stems and depth-uniform flow, the mean depth-integrated
dissipation can be written

D, =aD,, (47)

where the dissipation for a rigid stem is D,.. = [4/(37)]l.r.p.Cpud, [the factor
4/(3n) is the mean of |cos(t)|], and the reduction in dissipation resulting
from stem motion is measured by

oz:(37r/4)/0 = d (48)

(in the notation of Luhar and Nepf, 2016, o = [./l). Note o = 1 for rigid
stems (us = 0), whereas o < 1 indicates a major reduction in dissipation, as
expected for highly flexible stems (us ~ u along most of stem length).
Dependence of o on S and 3, evaluated by repeated numerical simulations
with nonlinear drag, is shown in Figure 5. For large S or [, vegetation is
almost immobile, dissipation almost equals the rigid-stem value, and a ~ 1.
Lower S and f result in reduced dissipation and o < 1. For 5,0 < 1,
|u —us| = 0 above the SBL, so dissipation scales with the SBL thickness (i.e.
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Figure 5: Dimensionless depth-integrated wave dissipation « = (dissipation for flexible
stem) /(dissipation for equivalent rigid stem), versus stiffness S and buoyancy 8. Color and
solid contours: Numerical simulations. Dashed contours: approximate empirical formula
(49) (the « value corresponding to each dashed contour equals the « value of the closest
solid contour). Buoyancy dominates over elasticity above and to the left of the grey line
marking f = S'/2, whereas elasticity dominates over buoyancy below and to the right.
[can be greyscale for print version]

with S/4 when 8 = 0, or with 3'/2 when S = 0). Across the full range of S
and (3, the empirical function

1/4
~ { CsS + Cp3? ] (49)

1+ CsS + Oy

with Cg = 1/4 and C3 = 1/16 approximated « to within 20% (compare
solid and dashed contours, Figure 5). This expression was chosen because of
it’s simplicity, and because it recovers the correct limiting behaviours [i.e. if
S>> 1or B> 1 (rigid limit) then a ~ 1; if S < 1 and S™/23 < 1 (elastic
boundary layer) then o = O(SY4); if 8 < 1 and S™%/23 > 1 (buoyant
boundary layer) then o = O(8/2)].

We have presented results for cylindrical stems in terms of S and £,
but for more complex geometries S and B are preferred. Noting that S =

21



(4/7)S and B = B/ for cylindrical stems, (49) can be rewritten as o =
[(égg + 0/352)/(1 + égg + 0,362)]1/4 where és = 405/7T = 7! and é/j =
Cps/m? = (4m)~2. This expression is used below to estimate dissipation for
stems with rectangular cross section. For stems with complex elevation-
dependent geometries, recalculation of numerical solutions would be required.

7. Applications to natural vegetation

The drag coefficient Cp varies with R, and K. (Luhar and Nepf, 2016),
but for simplicity we will use a typical constant value Cp = 2. We also use
a seawater density p, = 1010 kgm 3.

First, we analyze the bending of Zostera marina seagrass, whose prop-
erties are taken from Luhar and Nepf (2011). We consider stems of length
l. = 0.4m with rectangular cross-section (width normal to low=8 mm, thick-
ness in flow direction=0.35 mm), density ps. = 700kgm=3, and Young’s mod-
ulus E, = 10° Pa. We assume wave orbital motions with period ¢y, = 2s and
amplitude wup, =0.3ms™!. For moderately flexible stems, stem tilt is or or-
der (horizontal water particle displacement)/(stem length)= W./(27l.) =
(27 L)~ = 0.24, so stem tilt is only moderately small. Much larger ug. or o,
as might be common on exposed coasts, would bring the small-tilt approx-
imation into question. The dimensionless stiffness S = 9.2 x 10~% and the
dimensionless buoyancy = 1.8 x 102, These values suggest stems slightly
less flexible than shown in Figure 4, but substantially more flexible than
shown in Figure 3g-i. For steady 0.3 ms™! flows, buoyancy plays a major role
resisting stem bending (B ~ 20, Luhar and Nepf, 2011). However, for fluc-
tuating flows the small S and i suggest concentration of bending near the
bed, which increases the relative importance of elastic forces (because elastic
forces scale with a higher vertical derivative). Consequently, the relative im-
portance of buoyancy and elasticity in the SBL is given by 7 = S~/2j3 = .58,
indicating a small but non-negligible role for buoyancy. Direct calculation
confirms that elasticity is slightly more important than buoyancy for this
case [evaluating first and second terms on left of (17) from model output
and calculating the root-mean-squared (rms) over all elevations and times
yields rms buoyant forcing = 0.49xrms elastic forcing]. Owing to the high
flexibility of these stems, predicted dissipation is reduced to 13% of the value
expected for equivalent rigid vegetation [i.e. « = 0.1311, calculated from
(49)]. Neglecting buoyancy would have negligible effect on predicted dissi-
pation (a = 0.1308 if buoyancy is neglected), whereas neglecting elasticity
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would lead to substantial errors (o = 0.037 if elasticity is neglected).

Next consider the seagrass Thalassia testudinum. Plant properties (from
Bradley and Houser, 2009; Luhar and Nepf, 2011) are [, = 0.225 m, width=10 mm,
thickness=0.35mm, F = 2.4 x 10° Pa, and p,, = 942kgm 3. Applying the
same wave conditions as used above for Z. marina (to. = 2's, ugs« :O.3ms*1)
yields L = 0.38, S = 0.011, 3 = 0.0041 (resembling the case of Figure 3g),
and o = 0.22. T. testudinum dimensionless stiffness exceeds that of Z. Ma-
rina mainly because of the shorter 7. testudinum stem length [from (20), S
is proportional to [;*; T testudinum’s higher Young’s modulus also played a
role]. For steady flows B = 0.38, indicating a small but non-negligible role
for buoyancy. In contrast, ¥ = 0.039, suggesting that buoyancy plays very
little role under unsteady wave orbital velocities. This is confirmed by di-
rect numerical evaluation of elastic and buoyant forces (rms buoyant force =
0.047xrms elastic force). Next consider lower-energy waves (ug, = 0.02ms™!,
to« = 1.338), comparable to those observed in the field by Bradley and Houser
(2009). Now L = 8.5, 5§ = 0.11, 3 = 0.041, o = 0.40. Owing to the greatly
reduced drag in these lower energy conditions, stems are now able to resist
bending more effectively. Given observed stem density (1100 stems/m?) and
depth (1m), modifying a standard formula for attenuation of waves propa-
gating over a rigid canopy (Henderson et al., 2017) to reduce dissipation by
the factor a = 0.40 yields the prediction that waves propagate a distance
2o« = 67m before their height is halved. This is in agreement with the ob-
served xo, =54 —103 m (inferred from Figure 2 of Bradley and Houser, 2009),
although uncertainty about vegetation properties precludes a more rigorous
test.

MH10 simulated dissipation by the sedge Schenoplectus americanus, with
typical [, = 0.6 m, ro, = 2mm, E, = 3x10® Pa, to, = 25, and ug, = 0.1 ms™ .
Assuming p,, = 700kgm =3, it follows that S = 0.18 and 8 = 0.1. For such
moderate flexibility stems, bending is not confined to a SBL, but instead
extends along the stem’s full length. It follows that the ratio of buoyant
and elastic terms is not v = S~1/243, as it would be in the SBL limit, but
instead is of order S™!8 = B = 0.56. Direct calculation confirms a small but
non-negligible role for buoyancy (rms buoyant term 0.33xrms elastic term).
Therefore, the MH10 assumption of negligible buoyancy may not be justified
for this case. However, a small buoyant force does not greatly modify stem
behaviour (e.g. compare Figure 3e,f), likely explaining the good fit between
observed stem bending and the elastic theory found by MH10 (an error in
the MH10 estimate of E,, which was chosen to fit observations, is likely).
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Buoyancy also has little effect on dissipation: a = 0.434 for the observed
S and [, whereas o = 0.432 if [ is reset to zero. For the observed stem
densities (about 300 stems/m?), these « values are consistent with observed
attenuation of waves propagating through the sedge canopy (Riffe et al.,
2011).

Pneumatophores of the mangrove Sonertia alba provide an example of
nearly rigid stems. We assume tg, = 25, ug. = 0.3ms™!, [, = 0.15m, rp, =
5mm, E, = 8 x 10° Pa, and p,. = 660kgm™ (Zhang et al., 2015). Now L =
0.25 and (2w L)™' = 0.64, suggesting that the small tilt approximation would
not be very accurate if stems were very flexible. However, owing to near-
rigidity (S = 6.5 x 103, 8 = 0.37), predicted [, /(maximum X,) = 1.6 x 10?,
so tilt is small.

The giant kelp Macrocystis pyrifera provides an example of a buoyancy-
dominated case. Since these plants grow in coastal environments exposed to
energetic long-period waves we take to, = 125, ug, = 1.0ms™!. Neglecting
complex geometry, we model fronds as cylinders with [, = 15m, 7o, =1cm,
E, = 1x107 Pa, and p,, = 595 kgm? (these properties chosen for consistency
with Utter and Denny, 1996, with artificially low p,, chosen to yield a total
buoyant force equal to the combined buoyant force of realistic stems and
pneumatocysts). For this highly flexible case (S = 1.2 x 107%, 8 = 1.6 x
1072) with v = 15, a buoyancy-dominated SBL is expected to extend about
3.2352l, = 6.1m above bed. The low S and f partly result from the
long stem length, with the exceptionally low Young’s modulus also playing
a role (Koehl and Wainwright, 1977). For cylindrical stems, elastic forces
would become important within an inner boundary layer extending about
(S/B)Y?l, = 0.13m above the bed. However, within this small distance
of the bed the cylindrical approximation may become inaccurate, as stems
spread to form a wide holdfast with complex geometry. Since L = 1.25, stem
tilt would be small [order (2rL)~' = 0.13] if bending were spread along the
full length of the stem. However, bending is in fact concentrated within the
SBL, where tilt is about ug.to«/[27(SBL thickness)] = 0.31. Therefore, much
greater ugp.to. would violate the small-tilt approximation. For these highly
flexible stems a = 0.05, consistent with the minimal dissipation observed in
the field (Elwany et al., 1995).

Mullarney and Pilditch (2017) measured tilts along the lengths of M.
pyrifera stems exposed to natural waves, with ug, ~ 0.2ms™!, [, = 2.2m,
dominant swell period to. = 9s (other kelp properties taken as above). Re-
sulting S = 9.5 x 1073, 8 = 0.41 and o = 0.34, so we expect a buoyancy-
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dominated, partially flexible case resembling Figure 3i, with relatively large
stem tilts near the bed. Near the stem’s free end, measured tilts often ex-
ceeded 90° from vertical, possibly owing to proximity of the water surface,
so results from the uppermost instrument will be excluded from the follow-
ing discussion. Among remaining measurement locations, at swell periods,
stem tilts were greatest near the bed, consistent with theory. Conversely, at
longer infragravity periods (nominally 64s), tilt fluctuations were relatively
uniform along the stem, with a slight reduction near the bed (excluding the
topmost sensor). To explain this observation, we re-consider scaling for the
case of a low-energy infragravity-frequency motion in the presence of more
energetic swell. We redefine ug,, to. and Wy, to be representative of infra-
gravity motions. Scaling now proceeds as in Section 2, with the exception
of u,, which is scaled by the amplitude of the dominant swell-frequency mo-
tion (following Lowe et al., 2007; Mullarney and Henderson, 2010). Analysis
then yields Sig = (tige/tsws)S and Big = (tige/tsws)5, Where t;g, and tg,. are
respectively infragravity and swell periods, S and [ are dimensionless stiff-
ness and buoyancy for swell frequency motions (as calculated above), and S;,
and f3;, are dimensionless stiffness and buoyancy for infragravity frequency
motions. Resulting S;, = 6.8 x 1072 and 3;, = 3, suggesting low-frequency
behaviour resembling Figure 3f (although stiffness may not be entirely negli-
gible, causing a small reduction in near-bed tilts). Predicted infragravity tilt
fluctuations are non-longer maximum near the bed, consistent with observa-
tions. Flexibility of blades attached to the ‘stypes’ (i.e. the primary stems),
neglected here, may also influence the observed behaviour (Mullarney and
Pilditch, 2017). Nevertheless, the observed qualitative frequency-dependence
of kelp tilts is consistent with the simple analysis presented above. This case
also illustrates the importance of low frequency motions to stem displace-
ment and dissipation (c.f. Stevens et al., 2001). Since f;, > 3, the model
predicts that the ratio (stem displacement)/(water particle displacement) is
smaller at infragravity frequencies than at incident frequencies. However,
since water particle displacements depend on frequency, this does not im-
ply that infragravity stem displacements are smaller than incident-frequency
stem displacements. Incident waves were an order of magnitude more en-
ergetic than infragravity waves, but water particle displacements scale with
velocity x period, and displacements of water particles at long infragravity
periods (~ 6m) were larger than displacements at shorter swell periods
(~ 0.3m). Consequently, although /3;, > 3, the predicted infragravity-period
stem displacement (~ 6 m/f;, = 2m) exceeds the predicted swell-period stem
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displacement (~ 0.3m, using Figure 3i). These predictions are consistent
with observations of order-one stem tilt fluctuations at infragravity periods,
with smaller fluctuations at incident periods.

Assumptions of depth-uniform flow and small stem tilt were adopted in
the above discussion. These assumptions are examined in Appendix B and
Appendix C.

Although the above discussion focused on positive buoyancy as a factor
preventing stem bending, the model equations remain applicable for plants
with negative buoyancy (e.g. some Turbinaria ornata, Stewart, 2006), so long
as stiffness is sufficient to prevent large stem tilts. Comparison with classical
analysis of the self-buckling beam problem (Greenhill, 1881) shows that a
negatively buoyant stem in still water can support its own immersed weight
when |3/S| < 1, but will collapse when |3/S| > 1 (note |5/S| = |B|).

8. Summary and Discussion

The model (17) can simulate stem motion and wave dissipation for a va-
riety of stem geometries and depth-dependent flows. However, to highlight
qualitative behaviour and emphasize key dimensionless parameters, analysis
here has focused on the simple case of constant-diameter stems in depth-
uniform flows. The model, representing a balance of elasticity, buoyancy and
drag, predicts bending along the length of a stem. Predicted stem motion
depends on hydrodynamic parameters (amplitude and period of velocity fluc-
tuations) and stem properties (the stem’s Young’s modulus, density, length,
and radius). A key result is that the ratio between water and stem displace-
ments is controlled by new dimensionless buoyancy parameter 5 (equations
21 and 19), in addition to the stiffness parameter S (equations 20 and 18)
considered by previous researchers. When S > 1 or § > 1 stems move much
less than surrounding water particles (Figure 3a—c), whereas stem and water
motions become comparable where S and [ are order-one (Figure 3d-f). For
S <« 1 and § < 1 stems are highly flexible, with stem bending concentrated
near the seabed (Figures 3g—h and 4a—c). In such highly flexible cases, the
relative magnitude of buoyant and elastic forces scales with S™'/23 (Sec-
tion 5). For the simple cases simulated, closed-form algebraic expressions
(47), (49) provide a good approximation of mean depth-integrated wave dis-
sipation across the full range of 5 and S. These expressions are sufficiently
simple for application to field cases, or for incorporation in wave propaga-
tion models. Application to a range of natural vegetation suggests a small
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role for buoyancy in some seagrasses and sedge cases, and (as expected) a
dominating role for buoyancy in giant kelp (Section 7).

Key model assumptions include large Keulegan-Carpenter number and
small stem tilt. The large Keulegan-Carpenter number condition is usually
met by highly flexible stems. Some cases satisfy the small-tilt approximation,
such as giant kelp under moderate waves, and many seagrasses under the
short-period low-energy waves common in estuaries. In contrast, large tilts
will be more frequent for smaller kelp, and for both seagrasses and giant kelp
under some higher-energy conditions. For the case of negligible buoyancy,
previous observations (Luhar et al., 2017; Luhar and Nepf, 2016; Mullarney
and Henderson, 2010; Riffe et al., 2011) have established model skill, even
in cases where tilts are not small. For the buoyancy-dominated case, model
predictions are qualitatively consistent with existing field observations of
kelp motion (Mullarney and Pilditch, 2017), but further experiments will be
required to develop more quantitative tests of model accuracy.

The theoretical range of applicability of the theory developed here, and
its relationship to previous work, is summarized in table 2. The theory de-
veloped here applies for most cases with large dimensionless length L (which
usually corresponds to small tilt cases), whereas previous steady-flow anal-
ysis (Luhar and Nepf, 2011) may apply for cases with small L (Luhar and
Nepf, 2016). Therefore, simple dissipation scalings, applicable for any com-
bination of buoyancy and elasticity, have now been developed for both small-
and large-L limits. For transitional cases with L ~ 1, further work will
be required to determine whether behaviour is intermediate between large-
and small-L cases, or whether new physics will arise. Additional work may
also be required to develop models for vegetation with complex, branching
geometry. Nevertheless, qualitative model predictions were encouraging for
the case of giant kelp, despite the contrast between the simple geometry of
modeled stems and the complex geometry of the natural vegetation.
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Table 1: List of Variables.

Variable Meaning Units
A, stem cross-sectional area m2
by = w stem buoyancy ms 2
Cp stem drag coefficient -
C, = % Cauchy number -
D, depth-integrated mean wave dissipation for flexible stem | kgm?s~3
D, depth-integrated mean wave dissipation for rigid stem kgm?s—3
E, stem Young’s modulus kgm™ s~
fos vertical buoyant force on stem, per unit stem length kgs—2
fax horizontal drag force on stem, per unit stem length kgs™2
Fp. vertical buoyant force integrated along length of stem kg ms 2
Fyy horizontal drag force integrated along length of stem kg ms ™2
s gravitational acceleration ms 2
I, second moment of stem area m*
I =1, typical scale for Iy, m*
I=1I/I. dimensionless second moment of stem area -
Uy stem length m
L=1,/Wo. dimensionless stem length —
pP= % dimensionless buoyancy (steady flow) -
Ty stem radius m
0% stem radius at z =0 m
T =Ty/T0x dimensionless stem radius —
S« distance from stem base, measured along stem m

= % dimensionless stiffness -
Ty time S
tos wave period S
t=t./to« dimensionless time -
T tension, integrated over stem cross-section kg ms 2
Us horizontal water velocity ms~!
Ugs horizontal stem velocity ms !
U amplitude of water velocity fluctuations ms ™!
U = U [Ugs dimensionless water velocity —
Us = Ugy [Ugx dimensionless stem velocity -
V. elastic shear stress, integrated over stem cross-section kg ms 2
V. stem volume above elevation z m?
Vos volume of entire stem m3
V =V, /Vox dimensionless stem volume above elevation z —
W, horizontal displacement of water particles m
Wos = Ugstos (27) xamplitude of water particle displacement m
W =W, /W, dimensionless water particle displacement -
X, horizontal stem displacement m
X = X./Wos dimensionless stem displacement —
Zs elevation above bed m
z = z/ls dimensi@ less elevation -
a=D,/D,, dimensionless dissipation -
8= ng’“?i*i‘é* dimensionless buoyancy (oscillatory flow) -
r ratio between stem and water complex amplitudes —
v kinematic viscosity of water m?s~!
P water density kgm™3
P stem density kgm™3
0 stem tilt (radians from vertical) -




Table 2: Summary of scalings for dissipation under quasi-steady (L < 1) and small tilt
(L > 1) limits in cases where bending is resisted by elasticity, buoyancy, or both elasticity
and buoyancy. Previous theories presented by DE08: de Langre (2008); LN11:Luhar
and Nepf (2011); NE98: Nikora et al. (1998); MH10: Mullarney and Henderson (2010).
Question marks indicate cases for which no simple scaling has yet been developed.

Lk1 L~1 L>1
quasi-steady | transitional | small tilt
Elastic DEOS8 ? MH10
Elastic + Buoyant LN11 ? This paper
Buoyant NE98 ? This paper
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Appendix A. Alternative expressions for depth-integrated dissi-
pation

Viewed from a frame of reference moving with the stem, dissipation ap-
pears to be (u, — us.) fps, whereas viewed from a fixed frame, dissipation is
Uy fps. We will show that, when depth-integrated and time-averaged, these
two expressions are equal for the model used here.

First note that w,fp. = (Ux — Usi) fps + Use [Ds. Therefore, we must
show that fo* Ugy fDx Az, = 0, or in dimensionless variables folmdz = 0.
Physically, we are showing that no significant mean work is done on the solid,
so all dissipation occurs within the water. Here the dimensionless force

fo=ra(u—us) =rud(W — X)/ot (A.1)

equals the right of (17). Multiplying both sides of (A.1) by us = 0X/0t,
depth-integrating, time-averaging, and using (17) yields

1
/U,stdZ:Ds—{—Dﬁ, (AQ)
0
where .
0X 0? 0?X
Dg = — |7 d A.
S 306t8z2(622> = (4.3)

- _5/ %)t( aaz < ) dz. (A.4)

It remains to show that Dg = 0 and Dz = 0. Integrating (A.4) by parts

yields
aX aXx X
__5_@5)‘@”5("7) 5/%( )dz'
(A.5)
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The first term is zero because V|,—; = 0, the second term is zero from (22),
and the integrand in the third term is

X\ 0 (0X\ Va |/9x\’
V(a—> o (a_) Y [(a_) ] =0 (4.6)
where the last equality follows from periodicity of the motion.

The result Dg = 0 follows in a similar manner after integrating by parts
twice and applying boundary conditions.

Appendix B. The depth-uniform flow approximation

Using the cases outlined in Section 7, we examine the accuracy and limita-
tions of the depth-uniform flow approximation. For cases with ¢y, = 2s, even
in just 2 m depth, near-bed velocity is smaller than near-surface velocity by
a factor of cosh(k.h,) = 4, where h, =water depth and k, = 27 /wavelength
(here calculated from linear wave theory). In contrast, velocity is attenuated
from the top to the bottom of Z. marina by only a factor of cosh(k.l.) = 1.09
(i.e. 9% attenuation). Therefore, it is important to account for depth-
attenuation over the full water depth, but the neglect of vertical attenua-
tion within the canopy is justified. Next consider the M. prifera case with
a 15-m-long stem, assuming water depth of 16 m, and take tp, = 9s. Now
k. = 0.064m™!, cosh(k.h,) = 1.6, and cosh(k,l.) = 1.5, indicating substan-
tial variability over the depth and along length of stem. However, we know
from the small S and 3 values that the stem can easily bend along its full
length to accommodate this variability, so substantial differences between
water and stem velocities are again confined to an SBL, with the appropri-
ate ug. being the nearbed value (within the SBL, velocity varries only 4%,
so the depth-uniform flow approximation is valid). Finally, consider giant
kelp with shorter period 3s waves (holding other factors constant). Now
k., = 0.45m~!, and cosh(k.h,) = 640, indicating very little nearbed flow
since these short waves are essentially in deep water. Since flow in SBL is
negligible, scalings based on SBL dissipation are invalid. Flow is almost com-
pletely attenuated along length of stem [cosh(k.l.) = 430]. Furthermore, the
length scale for depth attenuation of flow is now k! = 2.2m. Therefore,
scaling (7) is inappropriate and the vertical coordinate should be rescaled
using the scale k;!. Although full analysis is beyond the scope of this paper,
we briefly note that such scaling (with z = k,z,), leads to to modified values
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S =5x107% and 8 = 0.16. Such values indicate that buoyancy, although
insufficient to resist bending of the stem along its full length, is sufficient
to weakly resist the near-surface bending imposed by the depth-dependent
flows of these short period waves. Kelp may therefore allow passage of long
period waves while damping short waves (similar behaviour was noted for
elastic sedge by MH10). Depth-variability of velocity introduces two new
dimensionless parameters (k.h, and k.l,), and evaluation of the full range of
possibilities is beyond scope of this paper. However, we note that cases with
depth-dependent flows can be solved numerically, or analytically by repre-
senting the vertical structure as a sum of normal modes (adapting approach
of MH10 to account for buoyancy).

Appendix C. The small-tilt approximation

The small-tilt approximation will often be justified when L > 1. Nev-
ertheless, considering the examples of Section 7, the S. alba case indicates
that L > 1 is not always necessary for validity of the small tilt approx-
imation, while the M. pyrifera case with [, = 15m and a well-developed
stem boundary layer indicates that L > 1 is not always sufficient. We can
generally assess small tilt approximation from known S and g as follows:
if S > 1 and/or 8 > 1, then tilt is small if 2L x max(S, 5) > 1, |here
max (A, B) denotes the maximum of A and B]. Otherwise, tilt is small if
2L x max(3.925'4,3.235%/2) > 1.
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