Internal wave dissipation and mean flows in a sloping, stratified lakebed boundary layer

Stephen M. Henderson
John Harrison
Bridget Deemer
Observations in Lacamas Lake, WA

“Hypereutrophic”
Motivation: Nutrient Pollution (NO_3^-)
Estimating pollution removal (denitrification)

Removal of NO$_3^-$ pollution

⇒ creation of N$_2$ in bed

⇒ Elevation near-bed N$_2$

Turbulent diffusivity (Henderson)

Chemical flux = $-D \frac{\partial C}{\partial z}$

Vertical gradient in concentration (Harrison and Deemer)
Fluctuations in turbulent mixing

Layer-integrated measure of diffusivity

Big variations in near-bed mixing resulting from periodic stratification resulting from internal waves
Outline

1. Instrumentation
2. Lakewide internal waves
3. Boundary layer, deep lake
4. Boundary layer, thermocline
5. Summary/discussion of periodic stratification
Outline

1. Instrumentation
2. Lakewide internal waves
3. Boundary layer, deep lake
4. Boundary layer, thermocline
5. Summary/discussion of periodic stratification
Tripods deployed on Lakebed

- Acoustic Doppler Profilers (1 & 2 MHz pulse-coherent Nortek Aquadopps)
- Acoustic Doppler Velocimeter (Nortek Vector)
- PME fast temperature
- Chemical sampling
- 1.5 m
- + Temperature loggers (RBR & Hobo)
Outline

1. Instrumentation

2. Lakewide internal waves

3. Boundary layer, deep lake

4. Boundary layer, thermocline

5. Summary/discussion of periodic stratification
Full-depth velocity profiles

Acoustic Doppler Profiler (ADP)
Diurnal waves, upward phase propagation

Along-lake velocity (ms⁻¹)

Elevation above bed (m)

Time (day of 2011)
Diurnal waves, upward phase propagation

--- Theoretical internal wave propagation.

\[c_z = 2\pi \sigma^2 \frac{\lambda_x}{\sqrt{N}}, \quad \sqrt{N} = \left[-(g/\bar{\rho}) \frac{\partial \bar{\rho}}{\partial z} \right]^{1/2}, \quad \sigma = \text{frequency}, \quad \rho = \text{density} \]
Diurnal waves, upward phase propagation.

--- Theoretical internal wave propagation.

Fitted horizontal wavelength ($\lambda_x = 3000$ m) about twice lake length.
Diurnal waves, upward phase propagation.

- - - - - Theoretical internal wave propagation.
- - - - - Theoretical energy propagation.
Temperature Profiles

temperature transects measured along-and across-lake by repeatedly lowering and raising CTD from underway boat.
Along-lake: long wavelength
Across-lake: geostrophy

Geostrophy (thermal wind) observed for across-lake forces above bottom boundary layer

White circle: velocity into page
Black circle: out of page
Radius proportional to speed

\[\frac{\partial u}{\partial z} = (\rho f)^{-1} g \frac{\partial \rho}{\partial y}, \]

Velocity gradient:
- Observed
- Inferred from thermal wind
Like seiches, the observed waves had wavelength exceeding lake length.

Unlike standard seiches, the observed waves propagated vertically.
Like seiches, the observed waves had wavelength exceeding lake length.

Unlike standard seiches, the observed waves propagated vertically.

Why?
Nodal structure?

- Velocity spectra peak at elevation 1m, with second peak ~4.5m. Antinodes?

spectra measured by upward- and downward-looking ADCPs
Blanked out elevations (1.5-1.8m) span location of ADCP
Nodal structure

- Fitting vertically-propagating waves to observations 1.7 – 4.6 m above bed \((A_{up}=R* A_{down})\), wavelength = 1284 m), reproduces observed power spectra.

Note reflection coefficient R is frequency-dependent fitting parameter - this asks what reflection coefficient best fits data

Diagram:

- Observed
- Fitted

Power (m^2 s^{-1})

Elevation (m)

Frequency (day^{-1})
Upward phase propagation

- Upward phase propagation consistent with downward energy propagation.
Partial reflection

Non-dissipative seiches would have $R=1$

Blue dots: fitted (ignore black line for now)
Energy balance

$F_I =$ Incident wave energy flux

$F_R =$ Reflected wave energy flux

$D =$ Turbulent dissipation

From hourly mean velocity, fitting waves to upward ADP measurements

$F_I - F_R = D$

From turbulent velocity statistics, downward ADP
Predicting Reflection

\[R = \frac{\text{Reflected amplitude}}{\text{Incident amplitude}} \]

\[R_{\text{pred}}(\sigma) = \frac{1 - \alpha}{1 + \alpha} \]

\[\alpha = K \frac{u_{\text{rms}}}{c} \]

\[K = 2 \left(\frac{8}{\pi} \right)^{1/2} C_D \]

- Reflection was weak because vertical wave speed small \((c=10^{-4}\text{ms}^{-1})\), because Lacamas lake is small.

- Published data indicates vertical propagation in some other small lakes.

I think this sort of vertical propagation might be widespread in small lakes Leading-order departure from standard seiche idea.