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Abstract

Nonmetric multidimensional scaling (NMDS) is a powerful statistical tool which enables complex multi-

variate data sets to be visualized in a reduced number of dimensions. Users typically evaluate the fit of an

NMDS ordination via ordination “stress” (i.e., data distortion) against a commonly accepted set of heuristic

guidelines. However, these guidelines do not account for the mathematical relationship which links ordina-

tion stress to sample size. Consequently, researchers working with large data sets may unnecessarily present

ordinations in an intractable number of dimensions, subdivide their data, or forego the use of NMDS entirely

and lose the benefits of this highly flexible and useful technique. In order to overcome the limitations of

these practices, we advocate for an alternative approach to the evaluation of NMDS ordination fit via the

usage of permutation-based ecological null models. We present the rationale for this approach from a theo-

retical basis, supported by a brief literature review, and an example usage of the methodology. Our literature

review shows that NMDS analyses often far exceed the number of observations under which the original

stress guidelines were formulated—with a significant increasing trend in recent decades. Adoption of a

permutation-based approach will consequently provide a more flexible and quantitative evaluation of NMDS

fit and allow for the continued application of NMDS in an era of increasingly large datasets.

The trouble with stress

Researchers across a diverse array of fields are often tasked

with teasing out hidden patterns of structure from within

expansive and highly-dimensional datasets. Like many of

our peers in ecology and oceanography, our working group

often employs nonmetric multidimensional scaling (NMDS)

as the method of choice for visualizing patterns of commu-

nity abundance in a tractable number of dimensions—typi-

cally 2 or 3. NMDS is an extremely flexible technique for

analyzing many different types of data, especially highly-

dimensional data that exhibit strong deviations from

assumptions of normality. Unlike some other ordination

techniques, the NMDS approach fits data to a number of

axes that are determined a priori to the analysis and does

not contain hidden axes of variation. NMDS analysis can

only be achieved through a computationally-dense (and

somewhat opaque) algorithm that cannot be performed

without the aid of a computer. Consequently, usage is

heavily guided by heuristic guidelines and common practices

within the field. These common practices guide users to the

minimum number of dimensions in which a given dataset

can be visualized without inducing unacceptable levels of

distortion (measured as ordination “stress”).

In preparing some data for a recent publication, we

encountered a situation that led us to question these com-

mon practices. Specifically, this occurred when we attempted

to visualize some plankton community data in a

2-dimensional NMDS ordination, and the resultant value of

ordination stress (the de facto metric of ordination fit)

exceeded the commonly accepted limit of 0.2 (or 20—

depending on how the chosen software scales the stress val-

ues) (Kruskal 1964a; Clarke 1993; McCune and Grace 2002).

As reviewers of earlier publications have insisted to us that

this value be utilized as a strict cutoff, we reran the ordina-

tion seeking a 3-dimensional solution with lower stress.

Although the resultant ordination achieved a stress value of

less than 0.2, the addition of a third dimension provided lit-

tle to no improvement in interpretative power, and in many

ways obscured the major trends in the data.

As we consulted the ecological literature, we observed

that rigid adherence to this threshold is not uncommon. We

found that this threshold was commonly delineated in the

methodological details of manuscripts (e.g., see Boyra et al.

2004; Vizzini and Mazzola 2004; Bowen et al. 2005; Heino
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and Mykr€a 2006; Righi-Cavallaro et al. 2010; White et al.

2011), and that users sometimes increased ordination dimen-

sionality for the explicit purpose of achieving stress values

below this threshold of 0.2 (Eallonardo and Leopold 2014;

Breckenridge et al. 2015). Characteristic statements from the

literature include “. . .only NMDS ordinations with a stress of

0.2 or lower were retained. Stress values >0.2 are generally

considered poor and potentially uninterpretable” (Tyler and

Kowalewski 2014) and “If the stress levels were greater than

0.2, the plots were considered difficult to interpret” (Boyra

et al. 2004). Accordingly, we asked ourselves from where did

these guidelines for stress arise, and what benefit is gained

by adhering so rigidly to this cutoff value of 0.2?

In the following pages we aim to show that the generally

accepted guidelines of ordination stress arose from the prac-

tical experience of early workers, and that these guidelines

have become codified among some users in a manner likely

unintended by the progenitors of the guidelines. Secondly,

we demonstrate that sample sizes reported in the ecological

and oceanographic literature now frequently exceed the con-

ditions under which the original stress guidelines were devel-

oped, with a significant increasing trend in recent decades.

Next, we outline an argument against the usage of any single

set of fixed guidelines for ordination stress, supported by

examples drawn from real and simulated ecological data.

Finally, we highlight an easily-implemented alternative

approach to the evaluation of NMDS ordination fit, based

upon the employment of permutation-based null models of

community structure.

A brief history of nonmetric multidimensional scaling
and ordination stress

NMDS originated in the field of mathematical psychol-

ogy as a method of ordination with inherently nonmetric

variables such as personality traits and degrees of agree-

ment/disagreement (Shepard 1980). Although development

of the NMDS algorithm was somewhat of an iterative process

(Shepard 1980), the core NMDS algorithm was presented in a

pair of companion papers published in a 1962 issue of Psycho-

metrika (Shepard 1962a,b). Two years later, J.B. Kruskal pub-

lished a second set of papers in Psychometrika which

expanded upon and substantially improved the performance

of the NMDS algorithm (Kruskal 1964a,b).

Because NMDS produces an easily interpreted output and

is relatively free of assumptions about distributions of data,

the method has found broad application across a number of

fields (Kruskal and Wish 1978; Borg and Groenen 2005). Ini-

tial ecological applications of NMDS were largely restricted to

the study of terrestrial plant communities and tended to be

formidably complex in their technical details (Anderson 1971,

Prentice 1977, Matthews 1978). In the ensuing years, a num-

ber of authors directly compared the performance of various

ordination methods in recovering patterns of ecological

structure from simulated community datasets, and generally

found NMDS to be the most robust approach in most situa-

tions (Fasham 1977; Kenkel and Orloci 1986; Minchin 1987).

However, ecological applications of NMDS largely remained

restricted to terrestrial plant communities until the publication

of several key papers in the 1980’s which outlined a general

strategy for nonmetric multivariate analysis of community

data (e.g., Field et al. 1982; Kenkel and Orloci 1986). Subse-

quent advances in computing power and the widespread avail-

ability of statistical software tools for NMDS have dramatically

lowered the technical barriers to use of this algorithm, and as

such, this formerly esoteric methodology is now often taught

in graduate-level surveys of multivariate statistics (McCune

and Grace 2002; Zuur et al. 2007).

Returning to the initial development of the NMDS algo-

rithm, the key innovation of Kruskal’s implementation of

NMDS relative to previous incarnations of the algorithm was

the introduction of a quantitative measure of ordination

fit—a measure which he defined as “stress” (Kruskal 1964a,b;

Shepard 1980). Although stress is often discussed in terms of

ordination fit (Kruskal and Carroll 1969), stress is actually

the product of a normalized loss function which minimizes

the dissimilarity between rank order distances (De Leeuw

and Stoop 1984). This metric indicates how well the algo-

rithm has managed to arrange the points in the ordination

while preserving the rank-order distances (i.e., smallest dis-

tance, 2nd smallest distance, 3rd smallest distance, etc. . .) as

represented in the original matrix—measured as deviation

from a monotonically increasing (i.e., each value is greater

than the previous) function (Kruskal 1964a). Although two

slightly different calculations for stress exist, by far the most

commonly utilized measure of stress is known as “stress 1”

and is given as:

Stress 2
1 5

P
i;j dij2

~dij

� �2

P
i;j d2

ij

: (Equation 1)

Here the term dij represents the actual distance between sam-

ples i and j in ordination space, while ~dij represents the fitted

distance (in respect to the monotonic regression line)

between samples i and j. In the numerator, these differences

are squared so that only positive values are returned and

then summed across all pairwise combinations of samples.

The denominator is simply the sum of each squared dij,

which serves as a scaling factor. The lowest possible value of

stress is 0, which indicates complete accordance between all

rank order distances in the input data and the final ordina-

tion. Increasing amounts of discordance between the input

and the ordination will be reflected in values of stress

greater than 0. Although stress (Kruskals’s first formulation)

is nominally measured on a scale from 0 to 1, the maxi-

mum value of stress which can be attained in 2 dimen-

sional solutions is approximately 0.58, and this upper limit
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will decrease with increasing NMDS dimensionality (De

Leeuw and Stoop 1984).

For the researcher, one difficulty lies in deciding when a

value of stress is sufficiently high to caution against biologi-

cal interpretation of an ordination. To address this issue, sev-

eral authors (starting with J.B. Kruskal in his original 1964

manuscripts) have proposed guidelines for the interpretation

of NMDS stress based upon a series of cutoff values. K.R.

Clarke’s highly-influential “Non-parametric multivariate

analyses of changes in community structure” (1993) is the

most commonly employed resource for these guidelines,

with more than 8000 citations to date. Expanding upon rec-

ommendations in Kruskal’s original NMDS papers, Clarke

asserts (here slightly condensed):

“Stress <0.05 gives an excellent representation with no

prospect of misinterpretation.

Stress <0.1 corresponds to a good ordination with no real

risk of drawing false inferences. . .

Stress <0.2 can still lead to a usable picture, although for

values at the upper end of this range there is potential to

mislead. . .

Stress >0.2 is likely to yield plots which could be danger-

ous to interpret. Certainly by the time stress reaches 0.35-0.4

the samples are effectively randomly placed. . .”

It should be noted that although stress is often discussed

in terms of goodness-of-it (or badness-of-fit) it does not rep-

resent either in the conventional sense—but rather is an

algorithm optimization criterion. In the same sense that a

low Akaike Information Criteria (AIC) score does not imply

that a given regression model is an accurate representation

of a given system, a low stress value does not provide

researchers with carte blanche to freely interpret an NMDS

ordination. Clarke (1993) emphasized this point by follow-

ing his set of guidelines with an explicit warning against

over-reliance on stress, and pointing toward several comple-

mentary methods for evaluating ordination fit (e.g., Shepard

plots, scree plots, cluster analysis, etc.). Irrespective of these

warnings, the evaluation of stress against a ceiling of 0.2 (or

a rescaled value of 20) appears to have become an important

(or in some cases—primary) method of evaluating NMDS

ordination fit for many users.

Our brief survey of the NMDS literature (see below) found

that almost every article reported ordination stress values,

while virtually none of the manuscripts mentioned the use

of any other criteria to evaluate ordination fit. While a small

number of these studies did present ordinations with stress

values greater than 0.20, such examples were infrequent

(Clarke and Warwick 1994; Olsgard and Gray 1995; Paredes

et al. 2014; Gutow et al. 2015), and in some cases authors

explicitly stated that they had taken steps to avoid crossing

this threshold. For example Eallonardo and Leopold (2014)

stated that “Community composition data were [shown by]

plot scores from two-axis NMDS analyses (except for the P.

australis community which required three axes to achieve an

NMDS stress level less than 20)”.

Not all stress is created equal

As mentioned above, many users have tended to treat

these guidelines as a series of concrete rules. However, there

are several strong arguments against the use of these guide-

lines in such a manner, and moreover, against strict adher-

ence to any single set of guidelines. Firstly, when the

number of observations is small, the ordination tends to

become over-fitted, which links increasing sample size with

an increase in stress (Borg and Groenen 2005). Secondly,

stress values tend to decrease with increasing ordination

dimensionality, which complicates the comparison of stress

values between ordinations with differing numbers of

dimensions. The sample size effect on stress has been previ-

ously reported in Kruskal and Wish (1978) and graphically

shown by McCune and Grace (2002, fig. 16.4), but given the

continued overreliance of these stress cutoff values by some

members of the research community it may be of some util-

ity to provide a clear demonstration of these two properties.

An additional consideration before moving ahead to dem-

onstration of these properties of stress is that the strategy

utilized to deal with tied values in the dissimilarity matrix

can strongly affect the final value of stress achieved in an

NMDS ordination (Kruskal 1964a; McCune and Mefford

2016). In what Kruskal (1964a) termed the “primary”

approach, ties in the dissimilarity matrix are permitted to

correspond to distances in the ordination space that are not

tied. Conversely, Kruskal’s “secondary” approach constrains

the NMDS algorithm such that ties in the dissimilarity

matrix must correspond to tied distances in the ordination

space. Consequently, the constraints imposed upon the

NMDS algorithm by the secondary approach to handling ties

may yield relatively larger values of stress than analyses

using the primary approach. This point is particularly rele-

vant to types of data that are likely to contain ties, such as

presence–absence data, or matrices containing a small num-

ber of variables (McCune and Mefford 2016; Supporting

Information Fig. S1 of this manuscript)

As users of NMDS typically don’t report which approach

was used to break ties, this ambiguity further compounds

the difficulty of evaluating stress in absolute terms. Readers

should be cautioned against making assumptions about the

treatment of ties in any given work, as popular statistical

software suites operate using different approaches. For exam-

ple the MonoMDS engine implemented in the R package

vegan uses the primary approach under default settings

(Oksanen et al. 2017) while PC-ORD uses the secondary

approach under default settings in most, but not all, releases

(McCune and Mefford 2016).
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A demonstration of the trouble with stress using

field-derived and simulated data

At this point we will now introduce two types of data

that will be used to illustrate several of the aforementioned

points: field-derived and simulated ecological data. The field

data are a subset from an ongoing time-series of zooplankton

samples collected from the lower Columbia River in the

Northwest United States. This dataset contains 103 consecu-

tive monthly samples (representing �8.5 yr) comprised of 35

zooplankton taxa, collected from a single fixed location near

Vancouver, WA. This particular dataset will be utilized

because the large number of observations can be readily sub-

sampled to elucidate the effect of sample size on ordination

output, and because an extensive NMDS-based analysis of

these data is available for readers who seek further biological

context (Dexter et al. 2015).

In order to generalize our conclusions beyond this single

dataset, and indeed, to show that the patterns which we

wish to illustrate can be demonstrated across datasets of dif-

ferent dimensions, a large number of simulated ecological

datasets were generated and analyzed in parallel with the

Columbia River zooplankton data. This approach is consis-

tent with the historical NMDS literature, which has often

employed ordination of simulated ecological datasets to

demonstrate specific properties of the algorithm (Fasham

1977; Kenkel and Orloci 1986; Minchin 1987).

The simulated community data were structured across two

equally weighted ecological gradients and comprised of 10–

100 hypothetical species. The total abundance of each species

was normally distributed across the two ecological gradients,

with each species’ maximum abundance centered on a ran-

domly assigned niche optima. The width of each niche opti-

mum was also randomly assigned such that generalist species

would be distributed across the entire simulated landscape,

specialists would be concentrated within a localized region,

and other species would exhibit distributional patterns inter-

mediate between these two extremes. From this virtual land-

scape 5–100 samples were randomly drawn. In order to better

approximate stochastic sampling-effects, individual species

counts were determined by sampling from a negative bino-

mial distribution with the shape parameters of the distribu-

tion based upon the niche optimum value for that particular

species at that particular location within the simulated land-

scape. We acknowledge that these simulations represent only

rough approximations of ecological processes, but offer that

the resultant data exhibit a reasonable level of heterogeneity

and complexity for the purposes at hand. All ecological simu-

lations were conducted using the coenocliner package v0.2-2

(Simpson et al. 2016) in R v3.2.2 (R Core Team 2015).

Similarly, the Columbia River zooplankton data were

repeatedly subsampled to sets of 5–100 observations, ordi-

nated via NMDS, and summarized by the final stress value

achieved. This entire process was repeated across 2, 3, and 4

dimensions of ordination space, with the resulting mean

(6 SE) stress at each n shown as a loess smoothed regression

line with span 5 0.5 (Fig. 1a). 10 independent subsets were

ordinated at each value of n for each series, resulting in a

total of 950 ordinations per series. The analysis of the simu-

lated ecological data varied only in the respect that simulated

datasets were generated independently, rather than through

the subsetting of a larger dataset. In all other respects the

analyses and associated conclusions were unchanged between

field-derived and simulated ecological data (Fig. 1b).

The results of these experiments broadly agree with pat-

terns shown by Kruskal and Wish (1978) and McCune and

Grace (2002, fig. 16.4), and clearly demonstrate that stress

increases with increasing sample size and decreases with

increasing ordination dimensionality, essentially irrespective

of the underlying data. We can thus conclude that the com-

monly employed stress guidelines should not be applied to

NMDS ordinations of greater than 2 dimensions, and that

even within 2-dimensional solutions, the guidelines become

less reliable as studies diverge from the range of sample sizes

under which they were developed. Furthermore, we can see

that this sample size effect is particularly acute when the

number of samples is less than 20, but becomes greatly

diminished as the number of samples approaches 30–40.

This latter point is especially critical given that datasets

appear to be increasing in size over time—as one might

Fig. 1. The asymptotically increasing relationship between ordination
stress and sample size as shown by (a) ordination of subsamples from
the Columbia River zooplankton series and (b) ordination of indepen-

dently generated simulated ecological datasets. Each panel plots this
relationship for ordination in (k 5 2,3,4) dimensions, showing a clear

decrease in ordination stress with increasing values of k. Each of the six
data series are comprised of 10 independently generated samples at
each value of n, with the resulting mean (1/2 SE) shown as a loess

smoothed line with span set to 0.5.
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expect given the ongoing maturation of long-term studies

and the growing prevalence of multi-investigator projects.

Indeed, our research group has published many papers

(n 5 13) using NMDS, but only in relatively recent years have

our sample sizes grown to n>100 (Bollens et al. 2014; Dex-

ter et al. 2015; Lee et al. 2015; Hassett et al. 2017).

To highlight this issue, we compared 25 randomly

selected articles in the ecological and oceanographic litera-

ture that utilized NMDS and were published in 1994–1995

(just after Clarke’s highly influential manuscript was pub-

lished) against the same number of randomly selected

articles published in 2014–2015. We found a statistically sig-

nificant (p 5 0.0298; two-tailed unpaired t-test with Welches

correction) increase in sample size across this period, with

mean sample size of 38.8 6 5.0 during 1994–1995 and

60.5 6 8.3 during 2014–2015 (Fig. 2).

Similar issues have arisen in the application of NMDS to

genomic data, as modern genomic studies may contain

thousands of individual markers examined across highly

dimensional (k>10) ordinations (Tzeng et al. 2008; Jakai-

tiene et al. 2016). Approaches to surmounting issues of

sample size in this field have been highly variable, and

sometimes involve a complete reworking of the core NMDS

algorithm (Taguchi and Oono 2005; Tzeng et al. 2008), or

multiple-stage approaches which incorporate additional ordi-

nation methods (Zhu and Yu 2009). Clearly, the wider

research community would also benefit from a more flexible

framework to evaluate NMDS stress across a larger range of

sample sizes and higher dimensional spaces.

Toward a better interpretation of stress

Efforts to devise a more flexible approach to the evalua-

tion of ordination stress began to appear only a few years

following Kruskal’s 1964 formulation of NMDS (Klahr 1969;

Stenson and Knoll 1969), and in the ensuing decades,

researchers harnessed increasingly powerful computers to

update and extend this framework (Spence and Ogilvie 1973;

Levine 1978; MacCallum 1981; De Leeuw and Stoop 1984).

This flexible approach is based upon the repeated ordination

of random matrices in order to estimate the distribution of

stress values that arise from unstructured data, given a spe-

cific sample size and dimensionality. Such an approach

erects a specific null hypothesis (data are randomly struc-

tured) which is either rejected or accepted via the consulta-

tion of probability tables published for this specific purpose.

Due to the massive computational power required to pro-

duce thousands of NMDS ordinations, a truly robust set of

tables were not produced until the beginning of the 21st

century (Sturrock and Rocha 2000). The tables generated by

Sturrock and Rocha (which remain the most exhaustive to

date) are derived from over 500,000 randomly generated

matrices, each composed of 4–100 samples of 1–10 variables.

These easily-interpreted probability tables provide mean

stress values and 95% confidence intervals for datasets con-

taining up to 100 observations in 1, 2, and 3 dimensions

(Sturrock and Rocha 2000). Accordingly, the evaluation of

NMDS stress against these probability tables has begun to

gain traction across a wide range of fields, including anthro-

pology (Handwerker 2002), population genetics (Urbach

et al. 2007), human genomics (Batini et al. 2011), and lin-

guistics (Wnuk and Majid 2014). There remains, however, a

major flaw in the formulation of this approach that hinders

application of this approach for many types of data—

namely, the formulation of the null model. Sturrock and

Rocha (2000), for example, populated their matrices by ran-

domly drawing values from a uniform distribution. If one

considers this random matrix as an ecological dataset, a

series of problems become readily apparent. In these data, all

species are present in all samples, all species are equally

abundant, and all samples are equally diverse. In other

words, this particular null model (i.e., random structure)

would tend toward rejection when evaluated against virtu-

ally any ecological data. This conceptual flaw is not fatal,

however, and is easily remedied through the employment of

a more ecologically appropriate null model (with an impor-

tant caveat described below).

The generation of random matrices via a Poisson, nega-

tive binomial, or zero-inflated distribution would produce a

much better approximation of ecological data from which

probability tables could be derived. Given the computing

power readily available to modern researchers, it would be a

relatively simple task to recreate the probability tables devel-

oped by Sturrock and Rocha (2000) (which were not specifi-

cally intended for ecological applications) under a more

ecologically plausible framework. However, such an

approach would still prove unsatisfactory in a number of

ways. Most crucially, stress is also dependent upon the

Fig. 2. The increasing trend in NMDS ordination samples sizes as

observed in our review of the ecological and oceanographic literature.
There is a statistically significant (p 5 0.0298; two-tailed unpaired t-test
with Welches correction) increase in sample size across the time periods,

with mean sample size of 38.8 6 5.0 during 1994–1995 (n 5 25) and
60.5 6 8.3 during 2014–2015 (n 5 25).
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number of variables in any one sample, and that for groups

which share no overlapping members the stress is essentially

undefined (Shepard 1980; Borg and Groenen 2005). As such,

ecologically defensible stress probability tables would need

to allow for variation in the size of the total species pool and

the rarity of individual species—essentially turning a 2-

dimensional lookup table into an impractically complex set

of tables.

We believe a more promising approach for the evaluation

of stress lays not in the consultation of pre-made lookup

tables, but rather via iterative permutation of the dataset

of interest. We are not alone in this enthusiasm for

permutation-based approaches, as the basic idea of using per-

mutation tests to evaluate NMDS ordinations has been

around in some form or another for at least two decades. In

particular, our proposal builds upon and extends a Monte

Carlo randomization approach advocated by McCune and

Grace (2002) and implemented in the PC-ORD statistical

software (McCune and Mefford 2016). We aim here to eluci-

date and extend the basic conceptual framework underlying

such permutation-based approaches, and to demonstrate the

manner by which such approaches may be employed.

Briefly summarized, we advocate for the evaluation of

NMDS stress under an ecological null model framework. At

the most fundamental level, ecological null-models are a

permutation-based approach to evaluating specific biological

hypotheses against a background of heterogeneous data. As

defined in Null Models in Ecology (Gotelli and Graves 1996), a

null model is “a pattern-generating model that is based on

the randomization of ecological data or random sampling

from a known or imagined distribution. . . Certain elements

of the data are held constant, and others are allowed to vary

stochastically to create new assemblage patterns. The ran-

domization is designed to produce a pattern that would be

expected in the absence of a particular ecological mecha-

nism.” In this instance, the specific null model to be tested

is that permutations of the underlying dataset can produce

equivalent stress values to those achieved by the original

data. In ecological terms, failure to reject the null hypothesis

would indicate that a given ordination structure reflected

stochastic sampling of heterogeneously distributed species

rather than a systematic pattern of species-associations.

Of course, a potential pitfall of this approach is that the

permutation algorithm may be misspecified so that it does

not incorporate realistic biological constraints and produces

a null model which is too easily rejected (Gotelli and Graves

1996). This was the aforementioned pitfall encountered

when sampling from a random uniform distribution. Indeed

the possibility for incorrect specification of the null model

lies at the center of vociferous criticism of the early imple-

mentations of these models (Grant and Abbott 1980; Dia-

mond and Gilpin 1982; Quinn and Dunham 1983;

Roughgarden 1983), and spurred considerable theoretical

and methodological refinements to the use of ecological null

models (Gotelli 2001; Gotelli and Entsminger 2003; Gotelli

and Ulrich 2012). Fortunately, researchers are not forced to

construct and evaluate permutation algorithms for null

model construction from scratch, as there exists a large and

robust body of literature on this topic, which is well inte-

grated into the available software tools for ecological null

model construction (e.g., Picante—Kembel et al. 2014; Eco-

SimR—Gotelli et al. 2015; Vegan—Oksanen et al. 2017).

Example application of the ecological null model
approach to evaluating NMDS stress

As an example, we will demonstrate the straightforward

manner in which this permutation-based approach can be

employed to evaluate NMDS stress using three sets of data:

the aforementioned Columbia River zooplankton series (Dex-

ter et al. 2015), a simulated biological community exhibiting

a moderate degree of community structure (i.e., strong asso-

ciations between some species), and a simulated community

exhibiting a low degree of community structure. The varying

degrees of community structure among the simulated data-

sets were obtained by altering the niche breadth of individ-

ual species, such that the weakly structured community is

exclusively comprised of generalist species.

Each of the three datasets were evaluated against a null

hypothesis of unstructured species associations though

NMDS ordination of 1000 independent permutations of

each dataset. For each dataset, we tested the hypothesis that

community composition (and thus placement of points on

the ordination) is lacking in systematic structure. In each

case, the null hypothesis was rejected if p-values less than

0.05 were obtained when employing a one sample z-test.

Note that the z-distribution is a reasonable approximate of

the t-distribution because we are evaluating n 5 1000 permu-

tations, but this approximation would not hold for low val-

ues of n. The permutation algorithm was set to retain the

total counts per sampling unit, total counts per species, and

the number of zero-cells in the whole dataset. Although this

procedure may appear cumbersome, all steps of our analysis—

ordination, permutation (algorithm 5 “quasiSwap count”),

and test statistic calculation—were achieved through a single

call of the Oecosimu function found in the vegan package

v2.4-3 for R (R Core Team 2015; Oksanen et al. 2017). All

NMDS analyses presented in this manuscript were conducted

using Bray–Curtis dissimilarities derived from untransformed

species abundances, and with ties in the dissimilarity matrix

treated according to Kruskal’s primary approach (no penalties

for ties).

As to the results of this analysis, Fig. 3a (Columbia River

zooplankton) shows clear evidence in favor of rejecting the

null hypothesis of unstructured community data (z 5 25.51;

p<0.001). When combined with complementary metrics

(e.g., clustering algorithms, Shepard’s plot, etc.), this result

provides a strong basis for biological interpretation of the
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ordination. Figure 3b (moderately structured simulation

data) also shows clear evidence in favor of rejecting the null

hypothesis (z 5 211.27; p<0.001). Note that the stress value

associated with this set of simulated data exceeds the con-

ventional stress cutoff of 0.20, yet the results of the permuta-

tion approach indicate that the ordination contains a

meaningful degree of structure (which indeed was the pro-

grammed behavior of the simulation). In contrast, Fig. 3c

(weakly structured simulation data) shows insufficient evi-

dence to reject the null hypothesis (z 5 0.47; p 5 0.671),

which cautions strongly against any attempt to infer biologi-

cal conclusions from the ordination of these data. Of partic-

ular note is the fact that the stress values achieved in both

sets of simulations were roughly equivalent (and greater

than 0.2), but the permutation-based approach clearly differ-

entiated the systematically structured communities from

those structured only by stochastic sampling artifacts.

In summary, we have evaluated the NMDS ordination fit

for each of the three different data series, using cutoff values

appropriately matched to the sample size, ordination dimen-

sionality, and underlying level of heterogeneity of each data-

set. This approach can be distilled into a small number of

steps:

1. Define a specific ecological null hypothesis to be tested.

For the purpose of evaluating NMDS stress in biological

community data, a reasonable hypothesis would be that

species associations are random.

2. Choose a permutation algorithm appropriately suited to

the null hypothesis and dataset of interest.

3. Conduct NMDS ordination on many independent permu-

tations of the original dataset and record the values of

stress associated with each permutation. We have found

that 1000 iterations tend to be more than sufficient.

4. Evaluate the stress value associated with the original data-

set against the distribution of stress values from the per-

muted datasets using a one-sample z-test. By convention,

we have chosen to set alpha at 0.05 using a two-tailed

test.

5. If there is sufficient evidence to reject the null hypothesis,

and associated metrics of ordination fit (Shepard’s plots,

clustering, etc.) are likewise satisfactory, proceed with

efforts to produce a biological interpretation of NMDS

ordination.

Conclusion

Kruskal (1964a), Clarke (1993), Sturrock and Rocha

(2000), and many other authors have clearly stated that

stress should not be used as the sole criterion for evaluation

of NMDS ordination fit—with which we agree. Nonetheless,

the appeal of a hard numerical cutoff appears to have

favored the use of 0.2 as a firm limit among some users of

NMDS. This unintended rule becomes entirely untenable

Fig. 3. The distribution of stress values achieved via permutation of (a)
Columbia River zooplankton data, (b) simulated ecological data with

moderate community structure, and (c) simulated ecological data with
weak community structure. The stress value achieved for ordination of

each raw dataset is shown as the vertical dashed line in each plot. There
is sufficient evidence to reject the ecological null hypothesis (no system-
atic community structure) for the Columbia River zooplankton data

(z 5 25.51; p<0.001) and the moderately structured simulation data
(z 5 211.27; p<0.001), but not the weakly structured simulation data

(z 5 0.47; p 5 0.671).
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when we consider that stress values cannot be readily com-

pared across different levels of dimensionality, data structure

(e.g. binary vs. count), tie handling strategies, nor between

datasets of greatly different size.

Probability-based approaches to the evaluation of ordina-

tion fit have gained considerable traction in some fields of

research as a more flexible framework for the evaluation of

stress, but in their present form lack an appropriate null

model for the evaluation of biological community data. The

ecological null model approach of constrained permutation

demonstrated here provides an easily implemented method

for generating an appropriate null model for evaluating

NMDS ordination structure against a background of hetero-

geneous community data.

Although we have devoted considerable space to the discus-

sion of NMDS stress, we wish to reiterate that stress is not a

stand-alone measure of NMDS interpretability, but rather a

metric which directs the NMDS optimization algorithm. The

methodological approach we propose here allows one to evalu-

ate an NMDS ordination against a specific (but useful) null

hypothesis, but it does not provide any information on the

appropriateness of the chosen number of dimensions, or the fit

of individual points in the ordination space. For a fuller over-

view of such aspects of modern NMDS methodology we highly

recommend McCune and Grace (2002), Zuur et al. (2007) or

any trusted textbook on multivariate statistical analysis, while

those interested in more technical aspects of the methodology

are recommended to consult Borg and Groenen (2005) as well

as the aforementioned foundational NMDS papers.

Investigators wishing to employ this permutation-based

approach will find a wealth of freely available software tools

which can be easily integrated into existing workflows. The

vegan package for R (Oksanen et al. 2017) was used in the

analysis presented here, but other software tools (for exam-

ple PC-ORD) are available to perform similar functions. For

those wishing a more detailed tutorial, all analyses presented

in this workflow are available as a supplemental resource to

this article in the form of clearly annotated R script files.
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