Feeding dynamics of *Acartia* spp. copepods in a large, temperate estuary (San Francisco Bay, CA)

Gretchen C. Rollwagen Bollens*, Deborah L. Penry

Department of Integrative Biology, University of California at Berkeley, Berkeley, California 94720, USA

**ABSTRACT:** We measured diet composition, prey preferences and feeding rates of *Acartia* spp., an abundant copepod group in San Francisco Bay. Monthly incubations with *Acartia* feeding upon the natural planktonic assemblage were conducted during spring 2000 at 2 locations: South Bay (SB, lagoonal estuary) and San Pablo Bay (SPB, partially mixed estuary). Prey assemblages in SB and SPB were always dominated by nanoplankton, however *Acartia* never consumed cells <10 µm in either location. Overall abundance >15 µm was always higher in SB, comprised primarily of autotrophic cells (diatoms and pigment-containing flagellates). The assemblage in SPB was typically dominated by heterotrophic prey (ciliates and small non-pigmented flagellates). *Acartia* consumed a diverse diet but were highly selective for motile prey, especially ciliates and nanoflagellates. *Acartia* selectivity for individual prey taxa was strongest during periods of high food abundance, consistent with optimal foraging theory. In SB at least 50% of *Acartia* diet consisted of autotrophic biomass (diatoms, flagellates and the autotrophic ciliate *Mesodinium*). Ingestion rates were low and accounted for only 6.3% of body carbon per day, except during the March bloom, when *Acartia* ingested diatom biomass at 217 ng C copepod⁻¹ h⁻¹, or 188% of body carbon per day. In SPB *Acartia* diets were dominated by heterotrophic prey >10 µm, with ciliates and non-pigmented flagellates always >60% of total biomass consumed. Ingestion rates were lower than in SB (typically equivalent to 2.2% of body carbon per day), but in the April bloom *Acartia* increased consumption of heterotrophic flagellates to 121 ng C copepod⁻¹ h⁻¹, or 101% of body carbon per day. These results indicate that protozoans provide an essential nutritional supplement for San Francisco Bay copepods, especially in SPB, and that bloom periods may be important for copepod production and, in turn, higher trophic levels.

**KEY WORDS:** Copepod feeding · *Acartia* · Zooplankton · Ciliates · Clearance rates · Prey preference · Selectivity · San Francisco Bay

---

**INTRODUCTION**

The dominant paradigm of pelagic food web structure has historically held that copepods are the primary herbivores on autotrophic algae and in turn the main food source for adult and juvenile fish, thereby transferring energy directly from primary producers to higher trophic levels. However, more recently the linear food chain concept of diatoms–copepods–fish has been expanded to include the microbial community, and it generally acknowledges that copepods often consume a diverse diet that includes both autotrophic and heterotrophic prey.

This revision came about after improved sampling methods revealed the presence of a complex microbial food web in pelagic systems (Pomeroy 1974, Azam et al. 1983) and, in particular, high abundances of heterotrophic protists in a range of planktonic environments (Porter et al. 1985). Moreover, numerous recent field studies demonstrated that microzooplankton (heterotrophic/mixotrophic protists <200 µm) consumed from 13 to 100% of primary productivity per day (e.g. Burkill et al. 1987, Strom & Welchmeyer 1991, Verity et al. 1993, Landry et al. 1995, Tamigneaux et al. 1997, Lessard & Murrell 1998, Edwards et al. 1999). In contrast, copepods rarely consumed >30 to 40% of daily
phytoplankton production, even under bloom conditions (e.g. Bautista & Harris 1992, Dagg 1993, Dam et al. 1993, 1995, Landry et al. 1994, Rollwagen Bollens & Landry 2000). In addition to field evidence, several laboratory experiments showed that copepods ingested, and at times preferred, protozoans (i.e. ciliates) (Stoecker & Egloff 1987, Wiadnyana & Rassoulzadegan 1989).

As a result, many conceptual and quantitative models of planktonic food-web structure now include not only the potential for copepods to transfer materials and energy along the traditional planktonic chain, but also to form a trophic link between protozoan and metazoan food webs (E. B. Sherr et al. 1986, Stoecker & Capuzzo 1990, Gifford 1991, Sanders & Wickham 1993, Tett & Wilson 2000, Halvorsen et al. 2001).

Consequently, a growing number of field investigations have been undertaken to directly measure the ingestion rates and diet composition of copepods feeding on natural assemblages of planktonic prey. Those studies conducted in the open and coastal ocean strongly support the revised concept of copepods as omnivores, often preferring heterotrophic prey (e.g. Gifford & Dagg 1991, Kleppel 1992, Fessenden & Cowles 1994, Kleppel et al. 1996, Verity & Paffenhöfer 1996, Nejstgaard et al. 1997, Zeldis et al. 2002).

However, in estuaries, where the number of comparable investigations of copepod feeding preferences on non-algal prey is rather low, the results are less clear. For example, Gifford & Dagg (1988) showed that *Acartia tonsa* in a small Louisiana estuary highly preferred ciliates over phytoplankton and consistently consumed microzooplankton carbon well out of proportion to its availability. But in a shallow, turbid estuary in SW France, Gasparini & Castel (1997) found *Eurytemora affinis* and *Acartia bifilosa* to prefer autotrophic nanoplanктon over heterotrophic cells. Considering that estuarine copepods are an important food resource for many commercially harvested fish species, greater examination of copepod feeding behavior in estuaries is especially meaningful.

San Francisco Bay is one of the largest coastal embayments on the US Pacific coast and a very important temperate estuary for both commercial and recreational fisheries. Copepods are the dominant mesozooplankton in the Bay (Ambler et al. 1985, Bollens et al. 2002) and are an important dietary resource for the larval and juvenile stages of several planktivorous fish species (Meng & Orsi 1991, Moyle et al. 1992, Kurth & Nobriga 2001). However, fish populations in San Francisco Bay have declined dramatically over the past decade (Bennett & Moyle 1996), concurrent with significant reductions in the abundance of brackish water zooplankton populations (Orsi & Mecum 1986, Obrebski et al. 1992, Jassby et al. 1995, Kimmerer & Orsi 1996).

These declines are likely due to a combination of factors, including freshwater diversion, alteration of stream flows, loss of habitat, pollution, species introductions, and decreased primary and secondary productivity (reviewed in Bennett & Moyle 1996). But with many fish species at risk in San Francisco Bay, quantitative information about copepod feeding rates and diet composition is crucial to defining the trophic pathways in the lower planktonic food web leading up to fish and higher trophic levels, and to understanding the causes of their reduced abundance.

No such data on copepod feeding behavior in San Francisco Bay existed prior to this study. Therefore, we had 2 major objectives: (1) to measure the diet composition, prey selectivity and feeding rates of *Acartia* spp. in 2 hydrographically distinct regions of San Francisco Bay: South Bay and San Pablo Bay, and (2) to compare how *Acartia* feeding behavior varied between the 2 locations over a wide range of prey availability. We conducted incubation experiments with copepods feeding upon the natural assemblage of <200 µm planktonic prey in South Bay and San Pablo Bay over a 4 mo period in 2000 that encompassed the spring elevation in water column chl a concentration. *Acartia* were selective feeders throughout the sampling period, often preferring large, heterotrophic prey, which has important consequences for the planktonic food web of San Francisco Bay and large, temperate estuaries more generally.

**MATERIALS AND METHODS**

**Physical setting.** San Francisco Bay is comprised of 2 major sub-estuaries, South Bay and San Pablo Bay, which connect via the Central Bay through the Golden Gate to the Pacific Ocean (Fig. 1). Both estuaries are wide and shallow (mean depth = 6 m) and are incised by a narrow, relatively deep (~15 m) channel, but each sub-estuary is characterized by a distinctly different set of hydrographic conditions (Conomos et al. 1985).

San Pablo Bay is a large embayment of the greater North Bay/Delta system, which from December to May receives considerable freshwater inflow due to rainfall and melt waters from the Sierra Nevada mountains, with much reduced freshwater input during the summer and fall. It thus acts as a partially mixed estuary through winter and spring, with short water-residence times and high turbidity (Cloern et al. 1985).

The seasonal pattern of phytoplankton biomass in San Pablo Bay prior to 1986 ranged from low levels in winter (1 to 3 µg chl a l⁻¹) to high levels (>30 µg chl a l⁻¹) during the spring/early summer bloom period, with low levels again in late summer and a brief increase in biomass in fall (Cloern et al. 1985). However, in 1986...
the successful invasion and rapid population growth of the Asian clam *Potamocorbula amurensis* throughout San Francisco Bay (Nichols et al. 1990) resulted in the elimination of the annual phytoplankton bloom in the northern reaches of the Bay (Alpine & Cloern 1992). Hence, chl a levels in San Pablo Bay were consistently low through the 1990s. Recently, the abundance of benthic suspension feeders in San Pablo Bay has steadied or fallen somewhat (J. Thompson pers. comm.), and elevated phytoplankton biomass (>10 µg chl a l⁻¹) in the San Pablo Bay channel has been observed in late spring and early summer between 1998 and 2000 (Rollwagen Bollens & Penry unpubl. data, US Geological Survey [USGS] Water Quality Monitoring Program available at http://sfbay.wr.usgs.gov/access/wqdata).

In contrast, South San Francisco Bay is a lagoon-type estuary with relatively homogeneous conditions throughout the water column due to more limited inputs of freshwater during the year. Water residence time is on the order of months, and turbidity is relatively low. However, in March or April of each year the combination of spring rainwater runoff, reduced tidal mixing and periods of relaxed winds produce water column stratification in the South Bay that effectively isolates the phytoplankton community from benthic grazing and stimulates an intense (>30 µg chl a l⁻¹) but short-lived (3 to 5 wk) phytoplankton bloom. Despite the presence of *Potamocorbula amurensis* in South Bay, this pattern has been observed every year (Cloern 1991).

**Copepod feeding experiments.** As both bays experience a relatively predictable elevation of phytoplankton biomass in the late winter and spring, we used incubation experiments to measure *Acartia* prey preferences and ingestion rates over this period, to observe how copepod feeding changes over a wide range of prey abundance and taxonomic composition.

Copepods and prey for the experiments were collected from 2 stations in San Francisco Bay, 1 in South Bay and 1 in San Pablo Bay, corresponding to locations regularly visited by the USGS Water Quality Monitoring Program. For the last 30 yr, the USGS has measured a range of hydrographic parameters at numerous channel stations throughout the Bay and, in order to take advantage of this long-term set of accessory data, 2 USGS stations were chosen for our experiments: Stn 24 in South Bay (37° 41.9' N; 122° 20.3' W) and Stn 14 in San Pablo Bay (38° 0.4' N; 122° 24.3' W) (Fig. 1). We conducted 7 sets of experiments using copepods and prey from these stations between February and May 2000: 4 in South Bay (February 21, March 27, April 24 and May 26) and 3 in San Pablo Bay (February 28, April 24 and May 26). Profiles of temperature and salinity were obtained at each sampling station using a Seabird SBE19 CTD.

Fig. 1. Map of the San Francisco Bay estuary, CA, USA, showing station locations (●) where copepods and prey were collected.

Incubation experiments were conducted using adult, female *Acartia* feeding upon the natural assemblage of <200 µm planktonic prey. *Acartia* spp. comprises a suite of 2 sub-genera (*Acartiura* and *Acanthacartia*) and at least 3 species (*A. tonsa, A. californiensis, Acartiura* spp.) that co-occur throughout the saline (>10 PSI) portions of San Francisco Bay. However, between February and May, the most common species are typically *A. tonsa* and *Acartiura* spp. (Ambler et al. 1985, S. M. Bollens unpubl. data). For simplicity, we refer to this species group as *Acartia* from this point further. *Acartia* has historically been the most abundant copepod group in these regions, although a number of small copepod species (e.g. *Limnoithona tetraspina, Oithona similis*) have recently invaded the northern reaches of the Bay and are now among the numerical dominants (Bollens et al. 2002).

The feeding experiments followed a modified protocol as described by Gifford & Dagg (1988). Copepods for the incubations were collected using a 202 µm,
0.5 m diameter plankton net suspended for 10 to 20 min at ~3 m depth (in South Bay) or ~12 m depth (in San Pablo Bay) as the vessel drifted. Concurrently, a 10 l Niskin bottle equipped with interior teflon springs was used to capture water containing the natural assemblage of prey at the same depth as the copepods were collected. The water column in South Bay was relatively well mixed during each sampling period so experimental animals and prey were collected nearer the surface. However, in San Pablo Bay the water column was stratified during this period, with a low-salinity, seaward-flowing layer at the surface and a higher-salinity, landward-flowing layer at depth. Therefore, the plankton net and water bottle were deployed at depth in order to sample the high-salinity layer where *Acartia* is found.

For all experiments, unscreened natural seawater containing the planktonic assemblage was gently siphoned from the Niskin bottles through silicone tubing into 500 ml polycarbonate incubation bottles aboard ship. Triplec incubation bottles were filled as initial and final controls (natural nano-/microplankton assemblage only) and for the final treatments (assemblage plus copepods). All bottles and plankton were kept chilled and returned to the laboratory within 3 h.

In the laboratory, adult female *Acartia* were sorted from the plankton samples in dim light, transferred to holding beakers containing unfiltered seawater and kept at the experimental temperature. After ~4 to 6 h, 25 copepods were added to each treatment bottle to begin the experimental incubations. The final control and treatment bottles were completely topped off with unscreened natural seawater, covered in Parafilm and sealed to eliminate bubbles. The bottles were then mounted on a plankton wheel rotating at 1 rpm in a temperature-controlled room set to match the ambient conditions (~15 to 18°C). Two incubations per experiment were performed: over 12 h from 20:00 to 08:00 h the next morning (in darkness), and over 24 h from 20:00 to 20:00 h the next evening (12:12 h dark:light).

**Cell counts and biomass estimations.** The initial control bottles were subsampled for microplankton (15 to 200 µm) and nanoplanckton (~5 to 15 µm) at the beginning of each experiment; the remaining incubation bottles (final controls and treatments) were similarly subsampled after the 12 and 24 h incubations. The 15 µm threshold was used to distinguish microplankton and nanoplanckton, rather than the typical operational size boundary of 20 µm, based on the size distribution of organisms in the natural assemblage. In addition, all taxa with individual cell size <15 µm were considered nanoplanckton, even though some diatom genera (such as *Skeletonema* and *Chaetoceros*) often form chains that could be long enough to be perceived as microplankton by grazers. We chose to label these as nanoplanckton since abundance was measured on individual cell counts.

In order to enumerate and identify the microplanckton, a 200 ml subsample from each incubation bottle was preserved in 10% acid Lugol’s solution, then stored in the dark at 12°C until analyzed. Samples were processed within 9 mo of preservation. Aliquots of 25 to 50 ml from each bottle were settled overnight in Utermöhl chambers, and the entire contents of the chamber between 15 and 200 µm enumerated using an inverted microscope at 200× magnification. A minimum of 100 cells were counted per sample, identified to genus, and grouped into one of the following major prey categories: loricate ciliates, aloricate ciliates, diatoms, dinoflagellates, or autotrophic microflagellates. Each cell was measured using the ocular micrometer, and biovolume calculated according to geometric shape (Wong & Cloern 1982). A conversion of 0.35 cell: lorica volume was used to estimate loricate ciliate biovolume, based on direct measurements of >100 individuals over a range of taxa, times, and locations within each bay (data not shown). Carbon biomass was then estimated using the biovolume-biomass conversions of Menden-Deuer & Lessard (2000).

In the analyses, all ciliates were considered to be heterotrophic, except the autotrophic aloricate ciliate *Mesodinium rubrum* (Crawford 1989). Based on studies of protozoan feeding in Chesapeake Bay (Dolan 1991) and other work reviewed in Nejstgaard et al. (2001b), the ciliate taxa present in San Francisco Bay most likely ingest bacterial, algal or flagellate prey, even though some may also contain chloroplasts.

For nanoplanckton enumeration, an additional 100 ml subsample from each incubation bottle was preserved in 1% glutaraldehyde, from which 2 × 20 ml aliquots were stained with fluorescein isothiocyanate (FITC), filtered onto 1.0 µm black polycarbonate filters, and mounted on glass slides (Sherr et al. 1993). The slides were kept frozen until analysis (within 6 mo). In order to enumerate the nanoplanckton, a minimum of 100 cells between 5 and 15 µm were counted using an epifluorescence microscope at 400 to 450× magnification. Only cells larger than 5 µm were included since *Acartia* typically are unable to efficiently handle and ingest cells smaller than this size (Nival & Nival 1976). Cells were sized and grouped into 3 major categories: nanodiatoms, autotrophic nanoflagellates, or heterotrophic nanoflagellates (based on the presence or absence of chlorophyll autofluorescence within the cell). Nanoplanckton carbon biomass was estimated from biovolume as described for microplanckton.

**Feeding rates and selectivity.** Feeding incubations were carried out for 12 and 24 h in all experiments. However, since changes to the community composition in all experiments were significant after 12 h, we view...
the shorter incubation period as the best representation of how *Acartia* responded to the initial, ambient prey assemblage. Therefore, only the 12 h incubation results were used to measure *Acartia* feeding rates. Clearance rates (ml copepod⁻¹ h⁻¹) and ingestion rates (cells copepod⁻¹ h⁻¹ and ng C copepod⁻¹ h⁻¹) of *Acartia* were calculated using the equations of Marin et al. (1986).

Feeding selectivity and prey preferences of *Acartia* were then assessed in 2 ways: first, by comparing the distribution of prey types in *Acartia* diet with their distribution in the available medium in each experiment using χ² goodness-of-fit tests (Zar 1996). Significant (p < 0.05) differences between these distributions was interpreted as selective feeding by the copepod predators. The second measure of feeding preference was a comparison of clearance rates and electivity indices (*E*, Vanderploeg & Scavia 1979a,b) for the major prey categories consumed within each experiment, using Kruskal-Wallis ANOVA by ranks (Zar 1996). *Acartia* preferences for individual taxa were also assessed by calculating electivity indices for all taxa representing >2% of total microplankton abundance in each experimental incubation.

Clearance rate is a traditional measure of selectivity by suspension-feeding plankton, since the calculation is based on the ratio of the prey abundance remaining in a treatment bottle to initial abundance (with modification for cell growth in the controls without grazers). However, since the calculations involve taking the natural logarithm of this ratio, clearance rate can only be determined if the abundance of prey remaining at the end of a feeding incubation is greater than zero. Natural planktonic assemblages are characterized by many different individual taxa present over a wide range of relative abundance; thus, these experiments often resulted in some prey taxa being completely consumed. Clearance rates could not be calculated for these individual taxa, resulting in a biased and inaccurate description of predator preferences. Moreover, clearance rates were sometimes negative when prey growth in the controls exceeded grazing losses in the treatments with predators.

Therefore, in addition to using clearance rate as a measure of copepod prey preference, the preference of *Acartia* for different types of prey during each experiment was estimated using *E* (Vanderploeg & Scavia 1979a,b). Of the several electivity indices described in the literature, in particular Chesson’s α (Chesson 1983) and Ivlev’s E (Ivlev 1961), *E* is the most appropriate for this sort of feeding experiment. As reviewed by Lechowicz (1982) and Confer & Moore (1987), *E* is the only index sufficiently stable to accommodate both changes in relative abundance of food types and the presence of rare prey types.

While *E* does not allow for parametric statistical analyses, it does allow for a meaningful rank-order comparison of electivities from diverse sites and sampling periods. *E* ultimately compares the proportion of a particular prey type in the available medium with the proportion of that prey type in the predator’s diet. To estimate *E*, several calculations were made. First, the number of individuals of each prey type consumed by the copepods (*R*) in each experiment was determined as follows:

\[
R_i = \frac{(N_{ic} + N_{ic})}{2} - N_{it}
\]

where *i* was the prey item, *N* was the mean number of individuals present in the initial bottles, *N* was the mean number of individuals present in the control bottles at the end of the incubation, and *N* was the mean number of individuals present in each treatment bottle at the end of the incubation. The proportion of each prey type in the diet (*r*) and in the available medium (*n*) were then further calculated as:

\[
r_i = \frac{R_i}{\sum R_j}
\]

and

\[
n_i = \frac{N_{ic}}{\sum N_{ic}}
\]

where *m* was the number of prey types, and *R* and *N* were as described above.

*E* for each prey type was calculated according to the formula below:

\[
E_i = \frac{W_i - \frac{1}{m}}{W_i + \frac{1}{m}}
\]

where *W* was defined by the following equation:

\[
W_i = \frac{r_i}{n_i} - \frac{1}{\sum n_j}
\]

Neutral preference was indicated by an *E* of 0, with positive values up to +1 representing increasing preference and negative values down to −1 representing increasing avoidance.

Feeding rates and prey selectivity were determined for only those prey categories that met the following criteria. When the total abundance of either size fraction in an experiment (microplankton or nanoplankton) showed a significant reduction in cell numbers between the control
and treatment bottles at the end of an incubation ($p < 0.05$, using $t$-tests assuming unequal variances, Zar 1996), then the rates and electivities for all major prey categories in that size fraction were included in further analyses. If there was no significant reduction in total cell abundance between final control and treatment bottles within a size fraction, then only those major categories of prey that individually showed a significant reduction were also included.

RESULTS

Prey abundance, biomass and composition

Elevations in phytoplankton biomass occurred during early April 2000 in both South Bay and San Pablo Bay, with chl $a$ levels reaching a peak of 18.4 µg chl $a$ $l^{-1}$ in South Bay (at 3 m) and 14.7 µg chl $a$ $l^{-1}$ in San Pablo Bay (at 9 to 10 m) (Fig. 2). In both South Bay and San Pablo Bay, the abundance and carbon biomass of the <200 µm assemblage were dominated by cells in the nanoplankton size range, with abundances of nanoplankton typically 3 orders of magnitude higher than microplankton. Also, in both bays diatoms generally showed the greatest increases in abundance and biomass during the chl $a$ peaks. However, there were substantial differences in the overall patterns of change in abundance, biomass and taxonomic composition of the <200 µm community between the 2 bays.
its April maximum. Dinoflagellate abundance and biomass peaked in April, at triple the amount present in February, and then fell to moderate concentrations in May. Small (15 to 20 µm) autotrophic flagellates also increased dramatically in March, decreased somewhat in April and were again high in May (Fig. 3).

Nanoplankton. Before the chl a maximum, nanoplankton (5 to 15 µm) abundance and biomass were at their lowest levels, and nanoplanktonic diatoms were nearly completely absent (Fig. 3). However, in late March as chl a levels were beginning to rise, the small (5 to 8 µm cell⁻¹), chain-forming diatom Skeletonema spp. increased by over 5 orders of magnitude to ~10⁵ cells ml⁻¹. Interestingly, abundance and biomass of small diatoms decreased in South Bay during April, when larger microplanktonic diatoms were at their maximum concentrations, while autotrophic flagellates remained at relatively high abundance throughout March, April and May. Heterotrophic flagellates showed only slight variations in abundance and biomass throughout the sampling period from February to May, despite the dramatic changes in autotrophic biomass (Fig. 3).

San Pablo Bay

Microplankton. Among the microplanktonic community in San Pablo Bay prior to the elevation in chl a concentration, ciliates represented ~51% of total abundance but >75% of the total biomass, made up of species mainly from the genera Tintinnopsis, Eutintinnus, Mesodinium and Strombidium. Diatoms (chiefly Coscinodiscus) and dinoflagellates (Ceratium, Protoperidinium, and Gymnodinium) made up equal proportions of the remaining assemblage. During the peak in chl a in April, both large diatoms and loricate ciliates increased by an order of magnitude over their pre-bloom levels. In late May, water column chl a concentration was again low, and overall ciliate biomass decreased by half from its peak in April. However, diatom biomass remained constant after the chl a peak as chains of small Thalassiosira cells increased in abundance (Fig. 4).

Nanoplankton. Similar to the pattern in South Bay, a substantial bloom of Skeletonema diatoms during April raised nanoplanktonic diatom abundance to more than 6 × 10⁵ cells ml⁻¹. Abundance and biomass of nanoplanktonic diatoms then fell dramatically during May, as chl a levels returned to winter levels. Autotrophic and heterotrophic flagellate biomass remained relatively stable at high levels throughout April and May (Fig. 4). Unfortunately, due to filtering problems, the February nanoplankton sub-samples from San Pablo Bay could not be enumerated. However, low nanoplankton abundance and biomass in May 2000, as well as low levels measured from the same location in February 1998 (G. C. Rollwagen Bollens unpubl.), suggest that nanoplankton abundance and biomass were likely low in February 2000, just as was observed in South Bay (Fig. 3).

Prey selectivity and ingestion rates

Throughout the 4 mo sampling period in both bays, Acartia demonstrated strongly selective feeding behavior as measured by highly significant (p << 0.001) differences in the distributions of prey items in their diet compared to the distributions of prey available in the feeding medium. Moreover, Acartia never consumed prey <10 µm in size and often preferred prey...
>25 µm, despite the prey field being dominated by nanoplankton cells (5 to 15 µm). *Acartia* also showed significant preferences for particular categories of prey among those consumed in South Bay, but did not show significant preferences for any major prey category in San Pablo Bay.

**South Bay**

*Selection for major prey categories.* During all experiments selective ingestion of prey cells resulted in highly significant differences (p << 0.001) in both the abundance and biomass of each prey category in *Acartia* diet relative to that available (Fig. 5). From February through May, nanoplankton cells dominated the field of available prey. However, except in March, when *Acartia* consumed almost exclusively *Skeletonema* diatom chains, *Acartia* strongly selected for individual prey cells larger than 15 µm.

In February, when microplanktonic diatoms and ciliates were in roughly equal abundance and together only accounted for <1% of the available prey, nearly 75% of *Acartia* diet abundance was comprised of loricate and aloricate ciliates. In March, the chain-forming diatoms *Skeletonema* accounted for ~80% of the prey available, but were >99% of the total abundance of prey items in the *Acartia* diet. As the *Skeletonema* bloom disappeared in April, *Acartia* consumed a higher proportion of diatoms and dinoflagellates than in February or March. By May, despite continued dominance of the available prey by nanoplankton cells, *Acartia* showed very strong selection for 15 to 20 µm sized autotrophic flagellates (Fig. 5).

In addition to selecting larger cells over the dominant nanoplankton, *Acartia* also demonstrated preferences for particular categories of prey, as measured by significant differences between clearance rate and/or electivity index for the major prey categories consumed (Fig. 6). In February, there were no significant (p > 0.05) differences among either clearance rates or electivity indices for the major prey categories, indicating that no single major prey category consumed was preferred over the other. However, as *Skeletonema* diatoms bloomed in March, *Acartia* showed significantly positive electivity for dinoflagellates over the other prey categories (p = 0.039). The clearance rate for diatoms >15 µm was also significantly higher than that for nanoplanktonic diatoms in March (p = 0.026). Dinoflagellates were in low relative abundance, but were completely consumed in the incubations. This precluded calculating clearance rates for dinoflagellates, but it can be assumed that feeding rates on these prey would therefore have been high as well (Fig. 6).

*Acartia* preferred large loricate ciliates in April, with significantly positive electivity for this category, while electivity for microplanktonic diatoms was significantly negative (p = 0.019). Also in April, the clearance rate for loricate ciliates was significantly higher than for aloricate ciliates. Clearance of loricate ciliates was not significantly different from clearance of dinoflagellates, but both were significantly higher than the clearance rate for diatoms >15 µm. Finally, in May both measures of preference showed significant differences among prey categories (clearance rate p = 0.042; electivity p = 0.014), when *Acartia* shifted preference toward 15 to 20 µm autotrophic flagellates. Electivity for this size category of autotrophic flagellates was significantly positive, and clearance rate of these flagellates was significantly higher than clearance of both
microplanktonic diatoms and dinoflagellates (Fig. 6).

Preference for individual prey taxa. The pattern of electivity for individual taxa present in South Bay also suggests that *Acartia* was a highly selective feeder, especially when overall prey abundance was high (Table 1). *Acartia* often preferentially consumed specific prey genera (usually removing all cells of that type from the experimental enclosure), even when other prey of the same functional or taxonomic group were present in higher numbers.

In February, when the assemblage was relatively equally distributed among ciliates and diatoms, *Acartia* particularly targeted >30 µm diameter *Protoperidinium* (a dinoflagellate), *Thalassiosira* (a diatom) and large (>30 µm) *Strombidium* (an aloricate ciliate). In March, while chains of *Skeletonema* diatoms were in very high abundance, along with small (15 to 20 µm) autotrophic flagellates, *Acartia* preferentially consumed large centric diatoms (*Coscinodiscus* >100 µm diameter, *Thalassiosira* >25 µm) and *Strombidium* (alaricate ciliate). Small (<15 µm) diatoms were still in very high abundance in April and May, but *Acartia* continued to show preference for larger cells. In April, *Acartia* selected >30 µm *Mesodinium* (autotrophic ciliate). In May, *Acartia* shifted preference toward the cells in highest abundance, i.e. small (15 to 20 µm) autotrophic flagellates, but also maintained a preference for aloricate ciliates (*Halteria* and *Strombidinopsis*) (Table 1).

Ingestion rates. There were significant differences in mean ingestion rates (cells copepod⁻¹ h⁻¹) of *Acartia* upon the major prey categories in February (p = 0.027), March (p = 0.026) and May (p = 0.034) 2000, but not in April (p > 0.05). In February, loricate ciliates, aloricate ciliates and diatoms were all ingested at rates between 0.99 and 1.6 ng C copepod⁻¹ h⁻¹. When *Skeletonema* diatoms bloomed in March, *Acartia* dramatically increased their ingestion and consumed nanoplancktonic diatom biomass at 220 ng C copepod⁻¹ h⁻¹ and microplanktonic diatoms at 6.3 ng C copepod⁻¹ h⁻¹ (Fig. 6). Mean ingestion rates on the major prey categories were all comparatively low (<4.0 ng C copepod⁻¹ h⁻¹) in April but increased again in May when *Acartia* targeted the small autotrophic flagellates (90 ng C copepod⁻¹ h⁻¹). (Note that in 2 of the 3 replicate final treatment bottles for the May experiment, no 15 to 20 µm autotrophic flagellates were observed in the microscopical counts, which made it impossible to calculate clearance rate and ingestion rate for this prey category in those replicates.)

San Pablo Bay

Selection for major prey categories. In San Pablo Bay, there were highly significant (p << 0.001) differences between the frequency distributions of prey categories in the surrounding medium and prey categories in *Acartia* diet in April and May. These results indicate selective feeding by *Acartia*. The distributions were not significantly different (p > 0.05) in February; however, filtering problems prevented the enumeration of nanoplanckton in this experiment, and thus could not be included in the statistical analyses.

In San Pablo Bay, heterotrophic prey biomass was most often consumed (Fig. 7), unlike in South Bay, where *Acartia* consumed primarily autotrophic prey.
In February, while the abundance distribution of microplanktonic prey available was not significantly different from microplanktonic prey consumed, the cells actually ingested were sufficiently large that *Acartia* consumed a disproportionate amount (>90% of total diet) of aloricate ciliate and dinoflagellate biomass. In April, despite a very large concentration of *Skeletonema* diatoms, *Acartia* diets were dominated by heterotrophic nanoflagellates (10 to 15 µm), the only instance in any experiment when individual, non-chain-forming nanoplanктонс were significantly consumed. *Acartia* did show selection for individual diatom cells in May; however, they also consumed very large loricate ciliates (mostly *Eutintinnus*) out of proportion to their availability, such that *Acartia* diet was strongly dominated by loricate ciliate biomass (Fig. 7).

While the prey distributions in *Acartia* diet were substantially different from the available prey distributions in San Pablo Bay, *Acartia* did not demonstrate strong preferences for any particular category of prey.

### Table 1

<table>
<thead>
<tr>
<th>Prey type</th>
<th>February Avail</th>
<th>February Eaten</th>
<th>February E*</th>
<th>March Avail</th>
<th>March Eaten</th>
<th>March E*</th>
<th>April Avail</th>
<th>April Eaten</th>
<th>April E*</th>
<th>May Avail</th>
<th>May Eaten</th>
<th>May E*</th>
</tr>
</thead>
<tbody>
<tr>
<td><em>Loricate ciliates</em></td>
<td></td>
</tr>
<tr>
<td><em>Tintinnopsis</em> (70 µm)</td>
<td>15.4</td>
<td>8.8</td>
<td>-0.51 (0.32)</td>
<td>1.2</td>
<td>0.6</td>
<td>-0.05 (0.47)</td>
<td>5.0</td>
<td>17.7</td>
<td>-0.25 (0.38)</td>
<td>1.4</td>
<td>0.9</td>
<td>-0.06 (0.13)</td>
</tr>
<tr>
<td><em>Tintinnopsis</em> (35 µm)</td>
<td>1.2</td>
<td>0.6</td>
<td>-0.05 (0.47)</td>
<td>1.4</td>
<td>0.9</td>
<td>-0.06 (0.13)</td>
<td>1.4</td>
<td>0.9</td>
<td>-0.06 (0.13)</td>
<td>1.4</td>
<td>0.9</td>
<td>-0.06 (0.13)</td>
</tr>
<tr>
<td><em>Aloricate ciliates</em></td>
<td></td>
</tr>
<tr>
<td><em>Strombidium</em> (15–25 µm)</td>
<td>1.3</td>
<td>0.7</td>
<td>-0.44 (0.14)*</td>
<td>0.0</td>
<td>0.0</td>
<td>-0.36 (0.37)</td>
<td>0.2</td>
<td>0.6</td>
<td>0.20 (0.14)</td>
<td>0.1</td>
<td>0.1</td>
<td>0.01 (0.06)</td>
</tr>
<tr>
<td><em>Strombidium</em> (25–50 µm)</td>
<td>9.7</td>
<td>18.2</td>
<td><em>0.17 (0.07)</em></td>
<td>0.0</td>
<td>0.0</td>
<td>-0.55 (0.41)</td>
<td>1.9</td>
<td>5.0</td>
<td>0.04 (0.11)</td>
<td>0.6</td>
<td>0.5</td>
<td>0.06 (0.08)</td>
</tr>
<tr>
<td><em>Halteria</em> (10–20 µm)</td>
<td>0.2</td>
<td>0.2</td>
<td>-0.23 (0.39)</td>
<td>0.0</td>
<td>0.0</td>
<td>0.16 (0.26)</td>
<td>0.7</td>
<td>2.3</td>
<td>-0.09 (0.35)</td>
<td>0.0</td>
<td>0.1</td>
<td><em>0.28 (0.02)</em>***</td>
</tr>
<tr>
<td><em>Mesodinium</em> (20–30 µm)</td>
<td>2.7</td>
<td>2.8</td>
<td>-0.24 (0.36)</td>
<td>0.0</td>
<td>0.0</td>
<td>-0.94 (0.06)***</td>
<td>1.7</td>
<td>2.0</td>
<td>-0.40 (0.36)</td>
<td>0.8</td>
<td>0.1</td>
<td>-0.68 (0.22)*</td>
</tr>
<tr>
<td><em>Mesodinium</em> (30–40 µm)</td>
<td>5.3</td>
<td>9.7</td>
<td>-0.04 (0.35)</td>
<td>0.1</td>
<td>0.1</td>
<td>0.11 (0.56)</td>
<td>0.1</td>
<td>0.3</td>
<td><em>0.43 (0.09)</em></td>
<td>0.1</td>
<td>0.0</td>
<td>-0.58 (0.42)</td>
</tr>
<tr>
<td><em>Strombolidium</em> (30–50 µm)</td>
<td>3.1</td>
<td>1.5</td>
<td>-0.48 (0.26)</td>
<td>0.0</td>
<td>0.1</td>
<td><em>0.52 (0.07)</em></td>
<td>0.1</td>
<td>0.0</td>
<td>-0.05 (0.49)</td>
<td>1.9</td>
<td>2.6</td>
<td><em>0.34 (0.06)</em>**</td>
</tr>
<tr>
<td><em>Strombidinopsis</em> (60–70 µm)</td>
<td>1.5</td>
<td>0.2</td>
<td>-0.58 (0.42)</td>
<td>0.1</td>
<td>0.2</td>
<td>0.04 (0.53)</td>
<td>1.3</td>
<td>4.5</td>
<td>-0.10 (0.45)</td>
<td>1.9</td>
<td>2.6</td>
<td><em>0.34 (0.06)</em>**</td>
</tr>
<tr>
<td><em>Diatoms</em></td>
<td></td>
</tr>
<tr>
<td><em>Coscinodiscus</em> (30–50 µm)</td>
<td>2.8</td>
<td>0.9</td>
<td>-0.60 (0.24)</td>
<td>0.5</td>
<td>0.5</td>
<td><em>0.47 (0.02)</em>***</td>
<td>3.7</td>
<td>2.6</td>
<td><em>0.82 (0.18)</em></td>
<td>4.2</td>
<td>0.7</td>
<td><em>0.60 (0.06)</em>***</td>
</tr>
<tr>
<td><em>Coscinodiscus</em> (50–100 µm)</td>
<td>38.4</td>
<td>21.8</td>
<td>-0.43 (0.27)</td>
<td>0.0</td>
<td>0.0</td>
<td><em>1.00 (0.00)</em>***</td>
<td>61.1</td>
<td>0.0</td>
<td><em>0.95 (0.05)</em>***</td>
<td>11.1</td>
<td>3.2</td>
<td>-0.42 (0.19)</td>
</tr>
<tr>
<td><em>Coscinodiscus</em> (100–150 µm)</td>
<td>10.0</td>
<td>16.0</td>
<td>-0.13 (0.44)</td>
<td>0.5</td>
<td>0.5</td>
<td><em>0.58 (0.05)</em></td>
<td>9.3</td>
<td>35.9</td>
<td>0.25 (0.11)</td>
<td>0.1</td>
<td>0.0</td>
<td>-0.10 (0.45)</td>
</tr>
<tr>
<td><em>Ditylum</em> (100–150 µm)</td>
<td>0.0</td>
<td>0.0</td>
<td>-0.55 (0.45)</td>
<td>0.0</td>
<td>0.0</td>
<td>-0.06 (0.48)</td>
<td>0.7</td>
<td>0.0</td>
<td><em>0.85 (0.15)</em>**</td>
<td>0.0</td>
<td>0.0</td>
<td>-0.15 (0.43)</td>
</tr>
<tr>
<td><em>Thalassiosira</em> (25–50 µm)</td>
<td>0.0</td>
<td>0.1</td>
<td><em>0.36 (0.07)</em></td>
<td>0.4</td>
<td>0.5</td>
<td><em>0.36 (0.06)</em></td>
<td>6.0</td>
<td>11.6</td>
<td>-0.49 (0.27)</td>
<td>4.8</td>
<td>3.5</td>
<td>-0.02 (0.08)</td>
</tr>
<tr>
<td><em>Skeletonema</em> (5–8 µm)</td>
<td>67.0</td>
<td>97.0</td>
<td>0.25 (0.12)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Dinoflagellates</em></td>
<td></td>
</tr>
<tr>
<td><em>Protoperidinium</em> (30–40 µm)</td>
<td>0.3</td>
<td>0.3</td>
<td><em>0.36 (0.07)</em></td>
<td>4.6</td>
<td>10.9</td>
<td>-0.45 (0.28)</td>
<td>0.5</td>
<td>0.1</td>
<td>-0.60 (0.29)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Alexandrium</em> (15–25 µm)</td>
<td>0.2</td>
<td>0.0</td>
<td>-0.58 (0.42)</td>
<td>1.1</td>
<td>5.3</td>
<td>-0.19 (0.40)</td>
<td>1.1</td>
<td>0.7</td>
<td>-0.09 (0.09)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Flagellates</em></td>
<td></td>
</tr>
<tr>
<td><em>Autotrophic flagellates</em></td>
<td>25.9</td>
<td>0.0</td>
<td>-1.0 (0.0)***</td>
<td>65.1</td>
<td>81.6</td>
<td><em>0.30 (0.07)</em></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
consumed. Fig. 8 shows the clearance rates and elec-
tivity indices for the major prey ingested over the
experimental period. No prey category showed a sig-
ificantly positive electivity in any experiment (all p >
0.05). However, in April electivity for diatoms >15 µm
was significantly negative (p = 0.010), and electivity for
aloricate ciliates was significantly negative (p = 0.026)
in May, indicating avoidance of these prey in such
experiments.

**Preference for individual prey taxa.** When each prey
type was considered individually, the pattern of elec-
tivity by *Acartia* in San Pablo Bay suggests that, while
no major prey category was preferred in aggregate,
certain genera of prey were more often consumed out
of proportion to their availability than others (Table 2).
In all 3 feeding experiments between February and
May, covering a wide range of prey abundance and
taxonomic composition, *Acartia* always showed a
preference for large individuals (>30 µm) of the
autotrophic ciliate *Mesodinium*. In February, this
group was the only one for which a significantly posi-
tive mean electivity was observed. Even during April
and May, when diatoms were the most abundant cells
present by 2 to 4 times, *Acartia* rarely preferred
diatoms. In contrast, mean electivity indices in April
and May were positive for the aloricate ciliates
*Mesodinium* and *Strombidium* >25 µm in size (Table 2).

**Ingestion rates.** Ingestion rates of the major prey cat-
egories by *Acartia* in San Pablo Bay were significantly
different from each other in April (p = 0.026), but dif-
ferences were non-significant in February and May
(p > 0.05). As observed in South Bay, mean biomass
ingestion rates of *Acartia* in San Pablo Bay in February
were all low, ranging between 0.02 and 0.90 ng C
copepod⁻¹ h⁻¹ (Fig. 8). However, when *Skeletonema*
diatoms were blooming in April, *Acartia* did not con-
sume nanoplanctonic diatoms but instead showed the
highest ingestion rates on heterotrophic nanoplanクト
and loricace ciliates (120 and 20.0 ng C copepod⁻¹ h⁻¹,
respectively). In May, despite the fact that biomass of
prey >15 µm remained relatively high, mean ingestion
rates declined overall, but were still highest for loricace
ciliates (3.3 ng C copepod⁻¹ h⁻¹) (Fig. 8).

**DISCUSSION**

Our major objective in this study was to examine the
feeding dynamics of *Acartia* in San Francisco Bay over
a wide range of prey conditions. From February to May
2000, the abundance and taxonomic composition of the
<200 µm planktonic prey assemblage varied consid-
erably both within and between South Bay and San
Pablo Bay. Our results suggest that *Acartia* modified its
diet and ingestion rates in response to differences

![Fig. 7. Relative abundance and biomass of prey categories available vs eaten by *Acartia* spp. during 12 h incubations with unfiltered seawater from San Pablo Bay between February and May 2000. Definition of prey categories as in Fig. 3. Avail = % of total prey biomass available during incubation; Eaten = % of total prey biomass consumed during incubation.](image)

in the overall quantity and quality of prey available to
them.

**Acartia** diet composition and feeding selectivity

In both South Bay and San Pablo Bay *Acartia* were
omnivorous, consuming a diverse diet that included
both autotrophic and heterotrophic prey from a range
of taxonomic groups (i.e. ciliates, diatoms, dinoflagel-
lates and other flagellates). Other field studies of *Acar-
tia* diet composition have shown similar dietary diver-
sity. Kleppel (1992) found *A. tonsa* in coastal waters off
southern California to have diets most often dominated
by ciliate and dinoflagellate biomass (58%), followed
by nanoplanクト (~33 %) and diatoms (4 %). In a similar
field study conducted in Florida Bay, *A. tonsa* diets were also comprised of a range of prey, including diatoms, dinoflagellates, heterotrophic protists and nanoplanckton, and were rarely dominated by any single prey category (Kleppel & Hazzard 2000). Indeed, dietary diversity may be the rule rather than the exception for calanoid copepods, since mixed diets have been observed in the field for several other common genera, including Centropages, Undinula, Temora, Eucalanus, and *Calanus* (Kleppel et al. 1996, Verity & Paffenhofer 1996, Nejstgaard et al. 2001a). Consuming a combination of prey types likely allows copepods to adjust their diet under variable conditions of food availability, and may increase their chances for obtaining a nutritionally complete ration (Kleppel 1993).

Our results from San Francisco Bay show not only that *Acartia* were omnivorous and consumed a wide range of prey types, but that they were highly selective for the prey they did ingest. Many factors may affect the preferences of calanoid copepods feeding on natural prey assemblages, including cell size, prey density, nutritional quality and behavior. A comparison of feeding rates and selectivity both within and between South Bay and San Pablo Bay demonstrated that *Acartia* may have modified their diet according to the balance of these factors in each location.

**Size**

Comparisons of prey distributions from copepod diets and in the available feeding medium showed that *Acartia* in both South Bay and San Pablo Bay primarily preferred prey cells >15 µm in size, and never significantly consumed cells <10 µm, even though cells <15 µm were by far the most abundant. Moreover, the pattern of selectivity indices showed *Acartia* frequently targeted prey >25 µm in size compared to smaller individuals regardless of prey type, even under dramatically different conditions of overall prey abundance.

These results are supported by laboratory studies which have previously demonstrated that *Acartia* will selectively consume larger cells when presented with either beads or phytoplankton cells over a wide range of sizes (Wilson 1973, Nival & Nival 1976). In the field, size-selective feeding by *Acartia* has also been observed. Tiselius (1989) found *A. clausi* from Scandinavian coastal waters to increase clearance of ciliates as cell size increased, with a plateau at >25 µm equivalent spherical diameter. In addition, *A. tonsa* selected for medium or large particles in a French brackish lagoon, regardless of the shape of the particle-size spectrum (Gaudy et al. 1996). Similarly, *A. tonsa* and *A. clausi* both demonstrated selective feeding on large cells from natural suspensions of Chesapeake Bay plankton over a wide range of particle distributions (Richman et al. 1977).

Prey selection based on size has also been shown to be important for other calanoid copepods in feeding incubations using natural plankton assemblages, including *Centropages brachiatu*s (Cowles 1979), *Calanus finmarchicus* (Ohman & Runge 1994), *Eucalanus pileatus* (Verity & Paffenhofer 1996), *Temora stylifora* (Kleppel et al. 1996), *Eurytemora affinis* (Merrell & Stoecker 1998), *Calanus glacialis, C. hyperboreus* (Levinson et al. 2000), and *Temora longicornis* (Vincent & Hartmann 2001).

Increased selectivity for large prey by suspension-feeding copepods is likely due to their easier detection and capture relative to smaller cells (Jonsson & Tiselius 1990), especially in very particle-rich environments (Stoecker & Egloff 1987) such as San Francisco Bay. However, size alone cannot account for all of the prey selectivity by *Acartia* observed in San Francisco Bay.

**Fig. 8.** *Acartia* spp. Electivity, clearance rates and ingestion rates during 12 h incubations with unfiltered seawater from San Pablo Bay between February and May 2000. Definition of prey categories as in Fig. 3. Error bars = 1 SE.
Rollwagen Bollens & Penry: *Acartia* feeding in San Francisco Bay

Trophic status and nutritional quality

While *Acartia* diets in both South Bay and San Pablo Bay were diverse and comprised of prey >10 to 15 µm in size, the amount of autotrophic vs heterotrophic prey ingested differed between the 2 locations, most likely in response to differences in the suite of available food resources. South Bay provided higher abundance and biomass of microplankton (15 to 200 µm) prey than San Pablo Bay. In addition, South Bay exhibited a more substantial chl a increase in early April, likely due to blooms of 15 to 20 µm autotrophic flagellates, as well as increased abundance of the autotrophic ciliate *Mesodinium*, in addition to the bloom of *Skeletonema*. Similarly, a greater proportion of *Acartia* diets in South Bay was comprised of autotrophic prey than in San Pablo Bay. In all experiments in South Bay at least 50% of the prey biomass consumed by *Acartia* was autotrophic (including diatoms and *Mesodinium*), and this category exceeded 80% of their diet in March and May.

In San Pablo Bay *Skeletonema* diatoms also bloomed in April; however, the microplankton prey assemblage was characterized by fewer, but relatively larger, diatoms (*Coscinodiscus*) and loricate ciliates (*Codonellopsis* and *Eutintinnus*) than South Bay. During April and May in San Pablo Bay, *Acartia* diets were strongly dominated by heterotrophic prey >10 µm in size, with heterotrophic ciliates and 10 to 15 µm heterotrophic flagellates always representing >60% of the total biomass consumed, and no significant consumption of *Skeletonema*. Possibly the *Skeletonema* diatoms in San Pablo Bay were of lesser quality than those in South Bay, perhaps due to senescence or having been advected into San Pablo Bay from points further upstream (Lehman 1996).

The greater proportion of autotrophic prey consumed in South Bay relative to San Pablo Bay is likely due primarily to higher abundance of large (>15 µm) diatoms and autotrophic flagellates. But even under bloom conditions, *Acartia* continued to consume heterotrophic ciliate and dinoflagellate biomass out of proportion to their availability in both bays. This suggests that other mechanisms besides size and availability were also driving *Acartia* prey selectivity.

One explanation for *Acartia* preferences for ciliates in San Francisco Bay is their potential nutritional benefit as part of a diverse diet (Kleppel 1993). Several lab-

<table>
<thead>
<tr>
<th>Prey type</th>
<th>February</th>
<th>April</th>
<th>May</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Loricate ciliates</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Codonellopsis</em> (80–100 µm)</td>
<td>3.2 0.0 −0.06 (0.47)</td>
<td>3.2 0.1 −0.41 (0.31)</td>
<td>28.8 39.1 −0.20 (0.08)</td>
</tr>
<tr>
<td><em>Eutintinnus</em> (250–300 µm)</td>
<td>8.0 0.0 −0.48 (0.52)</td>
<td>2.8 3.3 0.10 (0.06)</td>
<td>1.4 1.7 −0.13 (0.44)</td>
</tr>
<tr>
<td>Unknown tintinnid (80–100 µm)</td>
<td>3.0 1.2 −0.55 (0.45)</td>
<td>0.0 0.0 −0.17 (0.41)</td>
<td>0.4 0.5 −0.56 (0.42)</td>
</tr>
<tr>
<td><strong>Aloricate ciliates</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Strombidium</em> (15–25 µm)</td>
<td>0.8 1.8 0.10 (0.22)</td>
<td>0.0 0.0 <strong>0.26 (0.02)</strong>*</td>
<td>0.1 0.5 <strong>0.22 (0.07)</strong>*</td>
</tr>
<tr>
<td><em>Strombidium</em> (25–50 µm)</td>
<td>10.7 3.1 −0.35 (0.36)</td>
<td>0.1 0.1 0.11 (0.09)</td>
<td>1.0 3.5 <strong>0.29 (0.02)</strong>*</td>
</tr>
<tr>
<td><em>Halteria</em> (10–20 µm)</td>
<td>0.4 0.0 −0.09 (0.46)</td>
<td>0.0 0.0 −0.17 (0.41)</td>
<td>0.4 0.7 −0.05 (0.08)</td>
</tr>
<tr>
<td><em>Mesodinium</em> (20–30 µm)</td>
<td>9.5 3.1 −0.71 (0.29)</td>
<td>0.0 0.0 −0.66 (0.34)</td>
<td>4.8 0.0 −0.97 (0.03)***</td>
</tr>
<tr>
<td><em>Mesodinium</em> (30–40 µm)</td>
<td>7.2 3.10 <strong>0.46 (0.06)</strong>*</td>
<td>0.0 0.0 <strong>0.26 (0.02)</strong>*</td>
<td>0.8 2.8 <strong>0.29 (0.02)</strong>*</td>
</tr>
<tr>
<td><strong>Diatoms</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Coscinodiscus</em> (30–50 µm)</td>
<td>1.8 1.2 −0.45 (0.29)</td>
<td>0.5 0.0 −0.78 (0.22)*</td>
<td>6.9 10.9 −0.13 (0.07)</td>
</tr>
<tr>
<td><em>Coscinodiscus</em> (50–100 µm)</td>
<td>6.5 2.4 −0.66 (0.34)</td>
<td>3.0 1.8 −0.25 (0.13)</td>
<td>21.4 6.1 −0.70 (0.30)</td>
</tr>
<tr>
<td><em>Coscinodiscus</em> (100–150 µm)</td>
<td>1.8 0.0 0.01 (0.50)</td>
<td>1.8 2.2 <strong>0.10 (0.03)</strong>*</td>
<td>16.5 0.0 −0.69 (0.31)</td>
</tr>
<tr>
<td><em>Ditylum</em></td>
<td>0.2 0.0 −0.55 (0.45)</td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Halteria</em> (25–50 µm)</td>
<td>0.1 0.0 −0.51 (0.49)</td>
<td>0.0 0.0 −0.15 (0.42)</td>
<td>1.5 3.8 0.07 (0.15)</td>
</tr>
<tr>
<td><em>Guinardia</em> (40–60 µm)</td>
<td>0.0 0.0 −0.55 (0.45)</td>
<td>0.0 0.0 −0.15 (0.42)</td>
<td>1.5 3.8 0.07 (0.15)</td>
</tr>
<tr>
<td><em>Navicula</em> (80–100 µm)</td>
<td>0.2 0.0 −0.29 (0.32)</td>
<td>0.0 0.0 −0.19 (0.30)</td>
<td>0.0 0.0 −0.01 (0.11)</td>
</tr>
<tr>
<td><em>Rhizosolenia</em> (150–175 µm)</td>
<td>0.3 0.2 −0.62 (0.38)</td>
<td>0.0 0.0 −0.79 (0.21)*</td>
<td>0.0 0.0 <strong>0.29 (0.02)</strong>*</td>
</tr>
<tr>
<td><em>Protoperidinium</em> (30–40 µm)</td>
<td>0.5 0.0 −0.85 (0.15)</td>
<td>0.1 0.0 −0.23 (0.20)</td>
<td>0.4 0.6 −0.15 (0.43)</td>
</tr>
<tr>
<td><em>Ceratium</em> (100–150 µm)</td>
<td>9.9 16.7 −0.13 (0.20)</td>
<td>83.2 86.9 −0.10 (0.31)</td>
<td></td>
</tr>
<tr>
<td><strong>Flagellates</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heterotrophic flagellates (10–15 µm)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Individual taxa representing >2% of total prey consumed by *Acartia* spp. during 12 h incubations with unfiltered seawater from San Pablo Bay between February and May 2000. Avail = % of total prey biomass available during incubation; Eaten = % of total prey biomass consumed during incubation; E*: mean (±1 SE) electivity index for that prey taxon during incubation. Positive E*: preference, negative E*: avoidance. Bold indicates E* significantly different from zero, with *p < 0.05, **p < 0.025, ***p < 0.01.
oratory studies have demonstrated that A. *tonsa* may select higher quality prey (e.g. exponentially growing or nutritionally rich vs senescent or nutritionally poor) using sensory perception (Libourel Houde & Roman 1987, Cowles et al. 1988). Ciliates typically have lower carbon:nitrogen ratios than algae, making them a more efficient source of proteins and amino acids (Kierboe et al. 1985, Stoecker & Capuzzo 1990). In addition, through their own grazing, as well as de novo production, protozoans may provide enhanced levels of important organic components that copepods cannot synthesize themselves, including polyunsaturated fatty acids, highly unsaturated fatty acids (HUFA) and sterols (Sanders & Wickham 1993). Klein Breteler et al. (1999) showed that protozoans not only ‘repackaged’ organic material by assimilating bacterial or algal HUFA from their own diets, but also enhanced copepod growth when these protozoans were incorporated into the copepod diet.

Similarly, laboratory studies have shown copepod egg production and survival to improve when protozoans were a part of the diet (Berk et al. 1977, Stoecker & Egloff 1987, Bonnet & Carlotti 2001). Several reports have also implicated diatoms as negatively affecting copepod fecundity and hatching success, especially during diatom blooms (Ban et al. 1997), but this effect was reduced when protists were included in the diet (Poulet et al. 1994, Ianora et al. 1995, Miralto et al. 1999).

In the field, the effect of protozoans on copepod egg production also appears to be beneficial. For instance, egg production of *Acartia tonsa* in Chesapeake Bay was found to be strongly correlated with temperature and protozoan biomass, but not with phytoplankton biomass, production or ingestion (White & Roman 1992). In addition, the combination of dinoflagellate and ciliate biomass in the diet explained 71% of the variability in egg production of several calanoid copepod species, including *A. tonsa*, in a range of estuarine and coastal waters (Kleppel et al. 1991). Egg production of *Calanus finmarchicus* in the Gulf of St. Lawrence was also uncorrelated with any measure of phytoplankton biomass or production, but *C. finmarchicus* produced consistently high numbers of eggs when heterotrophic microplankton were consumed (Ohman & Runge 1994). Lonsdale et al. (1996) showed *Acartia* spp. egg production to be positively correlated with the net growth rates of ciliates in 2 Long Island bays.

However, in cold, temperate waters where ciliates were a more variable component of total microplankton abundance, ciliate biomass did not impact *Acartia clausi* egg production (Tiselius 1989). The relationship between copepod feeding and egg production is complex, and the more predictive factors may be individual nutrients from among prey consumed rather than the prey organisms themselves (Kleppel et al. 1998). However, both the laboratory and field evidence is compelling to support the idea that protozoans provide an equal, and probably superior, source of nutrition for copepods as phytoplankton.

### Behavior

In both South Bay and San Pablo Bay, motile prey (ciliates and flagellates) made up at least 50% of the *Acartia* diet, except during March in South Bay, when *Acartia* nearly exclusively consumed the chain-forming diatom *Skeletonema*. Ciliates, dinoflagellates and heterotrophic nanoflagellates were particularly dominant components of *Acartia* diets in San Pablo Bay, where they were always >80% of the total biomass consumed. While size and nutritional quality may have been important in determining *Acartia* preferences, the behavior of both the prey and the copepods could also have resulted in motile prey being most often ingested.

*Acartia tonsa* readily exhibits 2 types of feeding modes: raptorial or ambush behavior when detecting motile prey, and suspension-feeding behavior when encountering non-motile prey (Jonsson & Tiselius 1990). *A. tonsa* has been observed in the laboratory to switch between these 2 feeding strategies in order to maximize energy intake (Kierboe et al. 1996). This was corroborated by Jakobsen (2001), who found that *A. tonsa* was able to capture ciliates that had strong escape responses, whereas copepods capable of only suspension feeding could not. Kierboe et al. (1996) also demonstrated that when presented with a mixture of non-motile diatoms and motile ciliates, *A. tonsa* maintained relatively constant clearance rates on ciliates regardless of diatom abundance, but decreasing clearance of diatoms as ciliate concentration increased. In addition they found that turbulence favored the selection of ciliates vs diatoms as prey. Mobility on the part of both copepods and their prey, and turbulence in the environment, would thus serve to increase the encounter rates of copepods and ciliates and/or flagellates. This could help to explain why we found motile prey (loricate ciliates and nanoflagellates) to be strongly selected for by *Acartia* in San Pablo Bay, where turbulent mixing is typically higher than South Bay, especially during high river flow in the winter and spring (Cloern et al. 1985).

Differences in motility cannot, however, account for the apparent preference of *Acartia* for heterotrophic flagellates over autotrophic flagellates in San Pablo Bay. In this case it is possible that trophic dynamics within the incubation bottles themselves could have
contributed to the lack of significant reduction in autotrophic nanoflagellate and nanodiatom abundance. The unfiltered natural plankton assemblage used as the feeding medium for _Acartia_ necessarily included a number of trophic levels below the added copepod grazers. The heterotrophic microplankton, primarily the ciliates and heterotrophic dinoflagellates, are known to be significant grazers of small phytoplankton (see ‘Introduction’). Thus the feeding pressure exerted on the ciliates by _Acartia_ could have released the autotrophic nanoflagellates from microplankton grazing, resulting in a lack of appreciable reduction in autotrophic nanoflagellate abundance between the control and treatment incubation bottles in our experiments. Such indirect effects of mesozooplankton grazing on nanoplanckton in incubation studies have been reported by others (Miller et al. 1995, Nejstgaard et al. 2001b), and are likely common in marine environments (Calbet & Landry 1999), especially in San Francisco Bay, where there may be several trophic levels between primary producers and copepods.

Finally, the pattern of _Acartia_ prey selectivity observed in San Francisco Bay, with greater selectivity for individual prey genera during periods of high food abundance and lesser selectivity during periods of low food abundance, is consistent with the predictions of optimal foraging theory (reviewed in Pyke 1984). In particular, Lehman (1976) developed a model for suspension-feeding zooplankton that predicted selection based on food quality rather than strictly by the physical constraints of their filtering mechanism, and that selection for preferred foods would be stronger when in high abundance and weaker when food was in low abundance. Laboratory results with _Eudiaptomus_ spp. feeding upon mixtures of living algae of varying quality, polystyrene spheres and dead algae supported Lehman’s (1976) model, and further showed that in the laboratory copepods may discern prey based on a combination of size and quality in order to maximize energy input (DeMott 1989). Our results from experiments with _Acartia_ feeding upon the natural prey assemblage in San Francisco Bay provide further field evidence to support the model of optimal foraging in suspension-feeding zooplankton.

**Ingestion rates**

Despite exhibiting strong preferences for particular prey, _Acartia_ in San Francisco Bay showed relatively low ingestion rates on the major categories of prey, typically falling within a relatively narrow range, between 0 and 6 ng C copepod⁻¹ h⁻¹. However, ingestion rates did increase during periods of maximal prey abundance. In South Bay, ingestion of nanoplanctonic diatoms exceeded 200 ng C copepod⁻¹ h⁻¹ during March, and ingestion of autotrophic flagellates reached 90 ng C copepod⁻¹ h⁻¹ in May. Similarly, in San Pablo Bay, ingestion of heterotrophic nanoflagellates rose to 120 ng C copepod⁻¹ h⁻¹ during April. Assuming 2.86 µg C ind⁻¹ for adult female _A. clausi_ in San Francisco Bay (Hutchinson 1981), the total carbon ingested during non-peak periods averaged only 6.3% of body C d⁻¹ in South Bay, and only 2.2% of body C d⁻¹ in San Pablo Bay. In contrast, ingestion of nanoplanctonic diatoms alone was sufficient to provide 188% of body C d⁻¹ during March in South Bay, and autotrophic flagellates provided 76% of body C d⁻¹ during May. In San Pablo Bay, ingestion of heterotrophic flagellates accounted for 101% of body C d⁻¹ in April.

Comparable field studies of _Acartia_ feeding in estuaries are few; however, our ingestion rate results are generally consistent with those reported in the literature. Biomass ingestion rates of protozoans by _A. tonsa_ in a Louisiana estuary averaged ~87 ng C copepod⁻¹ h⁻¹ in August, when 91% of available prey carbon was contained in phytoplankton <5 µm in size, but was especially low (~4 ng C copepod⁻¹ h⁻¹) in January, when 95% of phytoplankton was in the >5 µm size fraction (Gifford & Dagg 1991). In addition, ingestion rates of ciliate carbon by _Acartia_ spp. (_A. hudsonica_ and _A. tonsa_) in 2 Long Island bays ranged between 0 and 69 ng C copepod⁻¹ h⁻¹, and was most often <10 ng C copepod⁻¹ h⁻¹ (Lonsdale et al. 1996). In contrast, _A. tonsa_ in Florida Bay had ingestion rates that were often near maximal temperature- and food-dependent levels, averaging ~200 ng C copepod⁻¹ h⁻¹ through much of the year (Kleppel & Hazzard 2000).

Kleppel (1992) simultaneously measured ingestion rates and egg production of _A. tonsa_ in Los Angeles Harbor, and found that egg production required 16.5% of body C d⁻¹ at comparable temperatures as our experiments. If we apply these rates in San Francisco Bay, _Acartia_ did not ingest sufficient prey biomass of any type to meet reproductive requirements in 4 of 7 experiments. However, when chlorophyll levels were at their maximum _Acartia_ could fulfill its energy requirements by consuming small diatoms and autotrophic flagellates in South Bay, and small heterotrophic flagellates and ciliates in San Pablo Bay.

**Implications of _Acartia_ feeding for the planktonic food web**

The results of our feeding experiments demonstrate that when chl a levels and overall prey abundances were low in San Francisco Bay, >50% of the biomass consumed by _Acartia_ came from ciliates. Since blooms
in South Bay typically occur only briefly in the spring and may no longer occur to any significant or predictable degree in San Pablo Bay (although they may be rebounding, see ‘Introduction’), these protozoans may serve as a crucial dietary supplement to phytoplankton biomass for much of the year throughout San Francisco Bay.

Considerable evidence from both laboratory experiments and field observations demonstrates that protozoans, in particular ciliates and heterotrophic flagellates, are the primary herbivores and bacterivores in open ocean and coastal marine planktonic food webs (reviewed in Sherr & Sherr 1994, Strom 2000). In addition, protozoan grazing has been shown to be especially important in a range of estuaries, on both phytoplankton (e.g. Gifford 1988, Gallegos 1989, McManus & Ederington-Cantrell 1992, Dagg 1995, Froneman & McQuaid 1997, Ruiz et al. 1998, Sautour et al. 2000) and bacterioplankton (e.g. Sherr & Sherr 1985, B. R. Sherr et al. 1986). Based on these studies, the heterotrophic protists consumed by *Acartia* in San Francisco Bay could be the link to bacterial and algal production that would otherwise be unavailable to the copepods directly.

In South Bay, microzooplankton may indeed be important grazers of both small phytoplankton and cyanobacteria. Murrell & Hollibaugh (1998) conducted dilution experiments during spring and summer in South Bay and found that microzooplankton grazing rates were significant in 5 out of 7 experiments, averaging 0.41 d^{-1} for phytoplankton (measured as chlorophyll) and 1.84 d^{-1} for cyanobacteria. Moreover, in all but 1 of the 5 significant experiments, microzooplankton grazing was sufficient to balance both phytoplankton and cyanobacterial growth. Interestingly, the only 2 instances when microzooplankton grazing rates were not significant were during the spring phytoplankton bloom.

When these data are considered in conjunction with our results of *Acartia* feeding, a potential scenario for the trophic dynamics of the lower food web in South Bay begins to emerge. During non-bloom periods the microzooplankton (here shown to be mostly heterotrophic ciliates and nanoflagellates) comprise ~55% of *Acartia* diet, and may be the primary planktonic grazers of phytoplankton. This would translate into a system with potentially 3 trophic levels from primary producers to copepods, and could mean lower efficiency of energy transfer than if copepods were exclusively grazing phytoplankton. However, some of the energy loss could be offset by enhanced nutritional quality of protozoans. Conversely, during the spring bloom, growth of diatoms, particularly chain-forming *Skeletonema*, may exceed protozoan grazing, and they may be directly consumed by *Acartia*.

Although it was not measured directly in this study, higher energy efficiency at the base of the planktonic food web in South Bay during bloom periods may result in higher copepod production relative to non-bloom conditions. This may, in turn, result in enhanced fish production if fish spawning is coincident with the bloom. Indeed, *Acartia clausi* abundance was shown to increase in spring 1980 coincident with the phytoplankton bloom in South Bay (Ambler et al. 1985), and more recent (1997 to 1999) investigations of copepod dynamics in San Francisco Bay show a spring copepod population increase (S. M. Bollen unpubl. data). In addition, Pacific herring, one of the numerically dominant planktivorous fish species in San Francisco Bay, was also most abundant during the spring and summer of 1980 (Armor & Herrgesell 1985). This lends support to the idea that relatively short-lived but significant bloom periods in South Bay may be important times of increased productivity throughout the planktonic food web.

In San Pablo Bay the linkages within the lower food web may be quite different from South Bay. In the same study of microzooplankton grazing, Murrell & Hollibaugh (1998) found both herbivory and bactivory by phagotrophic protists <200 µm to be unexpectedly low in northern San Francisco Bay (including San Pablo Bay). Of 14 dilution experiments measuring grazing upon the phytoplankton community, only 3 returned statistically significant results. Similarly, only 2 of 6 dilution experiments measuring growth and grazing on the bacterioplankton community produced significant results. But of the 5 experiments where results were significant, microzooplankton grazing was higher than phytoplankton and/or bacterial growth. Nonetheless, based on the low number of experiments that showed statistically significant grazing rates, the authors concluded that microzooplankton have only a weak grazing impact in northern San Francisco Bay, and proposed instead that benthic suspension feeders may exert a stronger control on phytoplankton and bacterial populations.

Our results show that *Acartia* in San Pablo Bay consumed heterotrophic ciliate and flagellate biomass to a significantly higher degree than diatoms or any other autotrophic prey, even during a bloom of *Skeletonema*, and that in April these prey provided >100% of *Acartia* body carbon per day. If grazing on either phytoplankton or bacterioplankton by protozoans is not significant in San Pablo Bay, then it is difficult to explain the order of magnitude increase in ciliate biomass that we observed between February and April, when chl a levels peaked. Nor can we explain the preferential consumption of ciliates and heterotrophic flagellates by *Acartia*. However, closer examination of the dilution experiment technique may help to reconcile these apparently conflicting results.
Murrell & Hollibaugh (1998) pointed out that their conclusion of low microzooplankton grazing in northern San Francisco Bay was complicated by the possibility that some of the dilution method assumptions may not hold in this environment (e.g. differences in light levels between dilution treatments, various predator-prey interactions). Dolan et al. (2000) examined the effects of dilution on a range of microzooplankton groups from the Rhode River estuary, including rotifers, tintinnid (loricate) ciliates, heterotrophic aloricate ciliates, and autotrophic aloricate ciliates (Mesodinium rubrum). They found that, contrary to the assumptions of the dilution method, not all microzooplankton grazers were reduced in abundance with increasing dilution and that loricate ciliates actually had higher growth rates in the more dilute treatments than the undiluted treatments. Based on these results Dolan et al. (2000) suggest that there could be uncertainty in measured grazing rates from dilution experiments, and that the grazers in each experiment must be examined in order to determine any artifacts in grazing rate estimates.

Therefore, it is possible that the lack of significant grazing rates observed in San Pablo Bay by Murrell & Hollibaugh (1998) could be due more to complications from the dilution method than the actual lack of grazing on phytoplankton or bacteria by the microzooplankton. It may also be possible, therefore, that the few experiments where grazing rates were significant, and exceeded phytoplankton and bacterial growth rates, are more reflective of microzooplankton feeding behavior. This is speculative and can only be addressed through further investigations of heterotrophic protist grazing rates and diets in San Francisco Bay. However, it seems clear that in San Pablo Bay protozoans (i.e. ciliates and heterotrophic flagellates) are an important component of the planktonic food web, and that throughout the winter and spring they form the bulk of Acartia diet.

Thus, as in South Bay during non-bloom periods, the dominant planktonic pathway for carbon and energy in the San Pablo Bay is most likely through 3 or more trophic levels from phytoplankton to copepods. Further, when elevations in chl a concentration do occur in San Pablo Bay, copepods continue to consume protozoans, but at higher rates, and therefore likely have higher productivity than during periods of low chlorophyll. While this can only be assessed through direct measurements of copepod productivity (e.g. egg production experiments), spring bloom periods in San Pablo Bay may be windows of opportunity for copepod and fish production, but most likely at a lower magnitude than South Bay due to the additional trophic step.

In summary, Acartia in San Francisco Bay are omnivorous feeders, frequently exhibiting preferences for particular prey types based on a combination of factors including size, nutritional quality and motility, and generally following the predictions of optimal foraging theory. In South Bay diatoms and autotrophic flagellates are often consumed, especially during the spring phytoplankton bloom, while in San Pablo Bay heterotrophic ciliates and flagellates are the dominant prey for Acartia, regardless of phytoplankton abundance. Ingestion rates on prey biomass in both bays are relatively low, but within the range observed in other estuaries, and may not be enough to meet Acartia's dietary requirements except during bloom periods. Thus the spring elevations in phytoplankton biomass could be a crucial time for Acartia production, and perhaps higher trophic levels as well.

Acknowledgements. We gratefully acknowledge the Romberg Tiburon Center for Environmental Studies at San Francisco State University (RTC/SFSU) for the use of small boats for sample collections in San Francisco Bay. Julia Fulmer provided invaluable assistance in the field and laboratory. We thank Mary Silver of the University of California, Santa Cruz, for microscope time and laboratory space for GRB during AY 2000–2001. We especially acknowledge Steve Bollens of RTC/SFSU for his thoughtful advice and support, as well as the comments from 3 anonymous reviewers. This project was supported in part by the National Science Foundation Alan T. Waterman award (OCE-9320572) to D.L.P.

LITERATURE CITED

Alpine AE, Cloern JE (1992) Trophic interactions and direct physical effects control phytoplankton biomass and production in an estuary. Limnol Oceanogr 37:946–955

Editorial responsibility: Barry and Evelyn Sherr (Contributing Editors), Corvallis, Oregon, USA

Submitted: September 15, 2002; Accepted: March 18, 2003
Proofs received from author(s): July 23, 2003