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An Example

Imagine you are interested in explaining the size of amphibians at metamor-
phosis in a series of vernal ponds. You have measured:

• The snout-vent-length, or SVL, of metamorphosing frogs
• Area of the ponds
• Nutrient concentrations entering the ponds (say, all sources of nitrogen, for

simplicity)
• The growth of algal biomass as Algae
• Density of tadpoles in the pond

Overall, your hypothesis is that pond size will influence the size of metamor-
phosing frogs. What should you include in your regression?

I have made up data so our example can be concrete. Note that every vari-
able is normally distributed and standardized so that it is centered on zero and
one represents one standard deviation from the mean. I’ve also simulated the
data so everything is a linear regression. This is about as nice and neat as we
might hope!

I’ve plotted a scatter plot-matrix and you can see some variables are
strongly correlated and others much less so.

So my question for you is, what variable(s) should you include in a regression
to understand the influence of pond size on frogs’ size at metamorphosis
(SVL)?

I would suggest that there are two basic approaches many people would
suggest. First, many would suggest using individual predictors in separate
regressions. Here are those (in R, but hopefully you can find familiar terms in
the output) individual regression result:

##

## Call:

## lm(formula = SVL ~ Area - 1)

##

## Residuals:

## Min 1Q Median 3Q Max

## -2.7480 -0.6344 -0.0766 0.8086 3.3670

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)
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## Area 0.3777 0.1266 2.984 0.00358 **

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 1.214 on 99 degrees of freedom

## Multiple R-squared: 0.08252, Adjusted R-squared: 0.07325

## F-statistic: 8.904 on 1 and 99 DF, p-value: 0.003584

##

## Call:

## lm(formula = SVL ~ Algae - 1)

##

## Residuals:

## Min 1Q Median 3Q Max

## -2.08543 -0.58781 0.02514 0.45395 2.24655

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## Algae 0.66700 0.05861 11.38 <2e-16 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##
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## Residual standard error: 0.834 on 99 degrees of freedom

## Multiple R-squared: 0.5668, Adjusted R-squared: 0.5624

## F-statistic: 129.5 on 1 and 99 DF, p-value: < 2.2e-16

##

## Call:

## lm(formula = SVL ~ Nutr - 1)

##

## Residuals:

## Min 1Q Median 3Q Max

## -2.1521 -0.7468 -0.0532 0.8904 3.6577

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## Nutr 0.4690 0.1103 4.25 4.84e-05 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 1.165 on 99 degrees of freedom

## Multiple R-squared: 0.1543, Adjusted R-squared: 0.1457

## F-statistic: 18.06 on 1 and 99 DF, p-value: 4.845e-05

##

## Call:

## lm(formula = SVL ~ Density - 1)

##

## Residuals:

## Min 1Q Median 3Q Max

## -2.3551 -0.9326 0.0041 0.8380 3.7477

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## Density -0.04203 0.10307 -0.408 0.684

##

## Residual standard error: 1.266 on 99 degrees of freedom

## Multiple R-squared: 0.001677, Adjusted R-squared: -0.008407

## F-statistic: 0.1663 on 1 and 99 DF, p-value: 0.6843

The other approach is to throw every measured variable into the regression
and let the statistics sort it out. Here is the output from this full model:

##

## Call:

## lm(formula = SVL ~ Area + Nutr + Algae + Density - 1)

##

## Residuals:
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## Min 1Q Median 3Q Max

## -1.24652 -0.28528 0.06842 0.38049 1.13694

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## Area 0.00354 0.06578 0.054 0.957

## Nutr 0.22973 0.05255 4.372 3.12e-05 ***

## Algae 0.86894 0.04887 17.782 < 2e-16 ***

## Density -0.56727 0.04942 -11.478 < 2e-16 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 0.5189 on 96 degrees of freedom

## Multiple R-squared: 0.8373, Adjusted R-squared: 0.8306

## F-statistic: 123.6 on 4 and 96 DF, p-value: < 2.2e-16

A close inspection suggestions that we might end up with different results
depending on how we do it. Let me make it more obvious by plotting the pa-
rameter estimates from the regression from the individual models and the
corresponding parameter from the full model. −0.5
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Figure 1: Estimated coefficients when
estimated individually or in a full model.
Vertical lines are 95 percent CIs.

So what is the right answer to the question of how pond area affects size
at metamorphosis? (Or similarly, if we were interested in any of the other
variables, which model should you listen to?)

Maybe a better question is, why is this so hard? That one, at least, I can an-
swer now. It is difficult to know what each type of model is telling us because
we have not specified how we think things work in this system. Statistical mod-
els, including linear regressions, are simply association machines. No matter
what you have been told, regressions cannot tell us what caused what, at least
not by themselves. We need to graph out these relationships ourselves, outside
of the statistics. They can then help us understand what the regressions are
telling us (contingent on our graphs or models being right!). We will call these
DAGs.

What is a DAG?

A “DAG” is a directed, acyclic graph.

• directed: we are using arrows to describe causal influence
• acyclic: no cycles or loops, where A→ B → C → A

– positive or negative feedbacks means what you expect to see depends
on when in the process you are looking

• graph: nodes (=variables) connected by arrows (=causal relationships)
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Drawing causal relationships

The basics of drawing a causal graph or diagram are simple:

• Write out the variables that are important in your little piece of the system

– include both “predictors” and “responses” (Remember, our statistics do
not “know” which is which!)

– By convention, things you have measured are unadorned: e.g., X,Y, Z

– Things you have not measured (or are unobserved) are, for the purposes
of this handout, circled: U⃝

• Draw arrows showing (assumed) causal relationships connecting variables
(e.g., X → Y means “changes in X causes changes in Y”)

– Note that we are not drawing the order of things
– The arrows do not describe the direction or shape of the relationships,

just the influence
– Arrows do not show interactions, either

• Keep it simple. While you can, of course, draw whatever web of causal
relationships you like, just as with any other model, the more complicated it
is, the more difficult it is to understand and work with.

Also, try drawing alternate versions representing your hypotheses of how
the system works.

Back to our example

It would be worth spending a moment thinking about how you would draw a
DAG for our size-at-metamorphosis example. Even if you are uncertain about
how the system might work, trying to draw a DAG can help refine your uncer-
tainty or help you see the questions you need to ask. But that said, let me offer
a couple reasonable versions.

library(dagitty)

dag1 <- dagitty("dag{

Area -> Algae -> SVL

Area -> SVL

Nutr -> Algae

Density -> SVL

Area [exposure]

SVL [outcome]

}") Algae

Area

Density

Nutr SVL

Figure 2: First DAG

This first version suggestions that pond area (“Area”), perhaps simply be-
cause there is more sunlight available, and the influx of nutrients like nitrogen
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(“Nutr”) influence algal growth (“Algae”), which in turn influences SVL. Pond
area also has a direct effect on SVL, as does the density of tadpoles (“Den-
sity”). Does that sound reasonable? Me, I might wonder how pond area directly
affects the size of metamorphosing tadpoles.

dag2 <- dagitty("dag{

Area -> Density -> SVL

Area -> Algae -> Density

Nutr -> Algae -> SVL

Area [exposure]

SVL [outcome]

}") AlgaeArea

Density

Nutr

SVL

Figure 3: Second DAG

The second version suggests that the amount of algal growth is determined
by the area of the pond and nutrients flowing into the pond. Both the area
of the pond and algal growth affect the density of tadpoles; perhaps larger
ponds attract more breeding females in the spring and more food keeps more
tadpoles alive. I would guess that greater algal growth increases the size at
metamorphosis (SVL) and that higher densities decrease it. That seems a bit
more reasonable. But perhaps the nitrogen influx into a pond has a direct effect
on size at metamorphosis because the algae are of higher quality.

dag3 <- dagitty("dag{

Area -> Density -> SVL

Area -> Algae -> Density

Nutr -> Algae -> SVL

Nutr -> Q -> SVL

Area [exposure]

SVL [outcome]

Q [unobserved]

}") AlgaeArea

Density

Nutr

Q

SVL

Figure 4: Third DAG

In the third version we’ve included this relationship from nutrients (“Nutr”) to
the unobserved variable “Q”, for food quality, to SVL.

Implied conditional independencies

What, you are likely asking, have we gained by drawing out these DAGs? There
are a few gains, but let me first focus on the testable implications of the DAGs.
If you look back at the first DAG, you can see that the two variables, Density
and Nutrients are independent of each other, as are Density and Area, Area
and Nutrients, and Density and Algae. That is, if you were to look for some
statistical association, this DAG suggests you should not find any. Or put
another way, knowing the value of one of the variables in each pair tells you
nothing about the value of the other.
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(Importantly, all of these “conditional independencies” are, well, conditional
on, in this case, not knowing SVL. If we included SVL in our statistical model
[e.g,. regression] then Area and Density would no longer be independent of one
another. If, say, we know the pond produces large metamomorphs and we also
know the pond is small, we could guess with some confidence that the density
in that pond must be pretty low, too. We’ll come back to this soon.)

There is one more implied conditional independence: Nutrients will be
independent of SVL if we condition on or include in our regression Algae and
Area. Let’s think about why. Because Nutrients act through their influence
on Algae, our DAG says that if we already know what Algae is, then Nutrients
do not add any more information. This is called conditioning on a mediator
because the effects of Nutrients are mediated by algal growth.

Why, you might ask, do we also need to condition on Area to make Nutri-
ents and SVL independent? This is because Area also has an influence on
Algae. Imagine a nutrient poor environment that still had moderately high al-
gal growth. According to this model, that could only happen if the pond area
were large, and so knowing if we do not also know pond Area, Nutrients still
tell us something about SVL even if we know Algae. I know, it’s a bit headache-
inducing, but it will get easier with practice.

While it is good to try to puzzle out these independencies yourself, it turns
out the logic of them is pretty rote and so computers can do it just fine. In the
R package dagitty, which I’ve been using to plot the DAGs1 there is a function 1 Full disclosure, I’m actually using a plotting

function in the package rethinking,
because it circles unobserved variables.

with the catchy name, impliedConditionalIndependencies. It can tell
you those implied conditional independencies. (If you do not use R, you can
draw and analyze your DAGs at http://dagitty.net/dags.htm. There are
also interactive lessons at http://dagitty.net/learn/index.html.)

impliedConditionalIndependencies(dag1)

## Alga _||_ Dnst

## Area _||_ Dnst

## Area _||_ Nutr

## Dnst _||_ Nutr

## Nutr _||_ SVL | Alga, Area

Two notes on the notation The “X ⊥⊥ Y ” (X _||_ Y) notation means
that X is independent of Y. (X ⊥̸⊥ Y would mean that X is not independent of
Y.) Second, the | (|) symbol means “given” or “conditioned on” the stuff to the
right. So Nutr _||_ SVL | Alga, Area means Nutrients are independent
of SVL conditioned on (or given knowledge of) Algae and Area.

We can find the implied conditional independencies for the other two mod-
els.

http://dagitty.net/dags.htm
http://dagitty.net/learn/index.html


using directed acyclic graphs (dags) to describe and understand causal relations 8

impliedConditionalIndependencies(dag2)

## Area _||_ Nutr

## Area _||_ SVL | Alga, Dnst

## Dnst _||_ Nutr | Alga, Area

## Nutr _||_ SVL | Alga, Dnst

## Nutr _||_ SVL | Alga, Area

impliedConditionalIndependencies(dag3)

## Area _||_ Nutr

## Area _||_ SVL | Alga, Dnst, Nutr

## Dnst _||_ Nutr | Alga, Area

Notice that the implied conditional independencies are not the same be-
tween the three versions of the DAG. This can give us a way to test and con-
trast our various DAGs. For instance, we could test if pond area is independent
of density.

What do I mean by independent of? A quick and dirty definition would be
that the parameter estimate for, say, a regression of Density on Area is essen-
tially indistinguishable from zero.

summary(lm(Density ~ Area))

##

## Call:

## lm(formula = Density ~ Area)

##

## Residuals:

## Min 1Q Median 3Q Max

## -2.6743 -0.7181 0.1220 0.8862 2.6795

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 0.1436 0.1146 1.253 0.213024

## Area 0.4669 0.1195 3.908 0.000172 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 1.146 on 98 degrees of freedom

## Multiple R-squared: 0.1348, Adjusted R-squared: 0.126

## F-statistic: 15.27 on 1 and 98 DF, p-value: 0.0001716

In this case, it looks like Density does increase discernibly with Area, which
would suggests that the version of the system represented by the first DAG is
probably not correct.
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It is important to note that some DAGs will not have testable implications.
Also, sometimes different DAGs will have essentially identical implied condi-
tional independencies meaning one cannot differentiate the DAGs based only
on these associations. DAGs are useful tools, not magic.

A note on causation and statistics

You have probably noticed that our DAGs have not, so far, told us about causa-
tion2. That is not an accident; our understanding of causation does not come 2 Well, we can get a sense of which DAGs

might be wrong!from a DAG or any other model. Rather, DAGs just tell us the (implied) conse-
quences of the causal model we assume. That is super useful, but it does not
get us, as scientists, off the hook for sorting out causal relationships3. 3 There might be multiple DAGs and thus

multiple causal models consistent with
our data, for instance. And all of them are
simplifications of reality.

In a very real sense, our understanding of causation happens in our thinking,
our conversations with colleagues, the interplay of different studies. We come
to understand causal relationships by consensus, not by statistics.

There might be one sort of exception to this: experiments. Of course our
statistics do not know whether we did an experiment or just an observational
study and we have no way of telling them. But experiments are a bit magical
because they break the associations between variables. Rather than condition-
ing on, say, algal growth, you can see what happens when you add or remove
algae while keeping everything else the same. That let’s you discern the effect
of algae by itself, free of all the correlated changes. That’s powerful! We can
and often do sort out causal relationship in the absence of experiments4, but 4 I am a big fan of the late Sir Austin Bradford

Hill “criteria” for thinking about evidence of
causal relationships when experiments are
not possible. His original paper on this topic
is very readable.

they sure do help!

The four elemental relationships

We can gain further insights into our DAGs by thinking about how informa-
tion flows between variables. This is easier if we identify the basic ways that
variables can be related. It turns out that there are only four ways that three
variables can be related, which makes it easy. (As I describe them, look back at
the previous DAGs and see if you can identify each of them. Note: they might
not all be present in all of the DAGs.)

1. Pipe: Here the causal influence of X on Y is through the intermediate
variable Z.

X → Z → Y

This means that if we were to condition on the intermediate, Z , X and Y

should be independent of each other.

impliedConditionalIndependencies(dagitty("dag{X -> Z -> Y}"))

## X _||_ Y | Z

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1898525/pdf/procrsmed00196-0010.pdf
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2. Confound: In this case the variable Z affects both X and Y .

X ← Z → Y

You might be surprised to see that the implied conditional independence is
the same as for the pipe. (I was when I first learned these!)

impliedConditionalIndependencies(dagitty("dag{X <- Z -> Y}"))

## X _||_ Y | Z

Why are X and Y not independent unless we condition on Z? After all,
X does not cause anything to do with Y , and vice versa. The reason is that
while causation might flow in one direction (or in this case, in two directions
away from Z), information flows both ways. Think of it this way: Imagine X
and Y both increase with Z. Thus, if we know that X is small, that implies
that Y must also be small. This also works if X is positively related to Z

and Y is negatively related, or vice versa; knowing the value of one gives us
information about the other. This flow of information is only interrupted it we
know (condition on) Z. In that case, knowing X does not give us any extra
information about Y that is not already given to us by knowing Z5. 5 Does your brain hurt yet?

3. Collider: This is the opposite of the confound, where Z is influenced by
both X and Y .

X → Z ← Y

impliedConditionalIndependencies(dagitty("dag{X -> Z <- Y}"))

## X _||_ Y

In this case there is no information flow from X to Y (or vice versa); know-
ing X tells us nothing about Y . That is, unless we condition on Z. If we know
Z , then information flows between X and Y .

This takes a bit of thought, or perhaps an example6. Imagine Z is a light 6 I’m stealing this from Richard McElreath’s
excellent book, Statistical Rethinking.bulb, either on or off, and X is a light switch (again, on or off) and Y indicates

whether there is a source of electricity working. If all you know is that the light
switch is on (X = 1), you know nothing about whether there is an electric
source (Y =?). If, however, you also knew that the light bulb was shining (Z =

1), then you could easily infer that there must be electricity available (Y = 1).
Knowing the value of (or conditioning on) the collider, Z , lets information flow
between X and Y 7. 7 Try thinking through more scientifically

interesting examples, like G → H ← E,
where G is genetics, E is the environment,
and H is height.

4. Descendant: This is like the collider, but now instead of focusing on (or
conditioning on) Z we have a variable than comes from Z. It is sort of a
half-way collider.

Y↘

X↗ Z → D



using directed acyclic graphs (dags) to describe and understand causal relations 11

Again, X and Y are independent of each other unless one were to condition
on D (or Z). If, however, you were to include or condition on Z then D
would be independent of X and Y , but of course then you’d be ensuring X
and Y were not independent.

impliedConditionalIndependencies(dagitty("dag{X -> Z <- Y; Z -> D}"))

## D _||_ X | Z

## D _||_ Y | Z

## X _||_ Y

Closing the right doors8 8 Closing a path through which information
can flow is called “closing a door.” Then
there’s the “backdoor rule,” where information
flows through a non-causal path and the
“single door rule” and so on. I’ll let you look
those up.

Given these four elemental relationships you have a bit better sense of how
information flows between variables. This is important because it allows us to
a) better understand what a parameter in a regression is telling us and, if we’re
lucky, b) what to condition on to ensure the parameter estimate means what we
want it to mean.

For instance, in the full regression model, in which we conditioned on every-
thing, we saw that the regression coefficient for Area was essentially zero. We
might now recognize that in the second and third DAGs this would be expected,
because by conditioning on Density and Algae (DAG 2) or Density, Algae, and
Nutr (DAG 3) we have made Area independent of SVL. We have, if we believe
these DAGs, demonstrated that Area does not have a direct influence on SVL, it
only acts through its influences on Algae and Density. (In DAG 1 we would still
expect to see a direct influence of Area on SVL, so if this DAG were “correct,” it
would suggest a very small direct effect.)

Now what if our questions is simply what is the total influence of Area on
SVL? In that case we want to look at the relationship between Area and SVL,
without conditioning on anything else.

We can again use software to help us identify the covariate(s) we need
to condition on to obtain an unbiased estimate of the causal effect of one
variable on another, assuming the DAG is correct. Notice that when I defined
the DAGs above I wrote exposure = Area and outcome = SVL. This was
how we tell the software what is the “exposure” or putative cause and what is
the response or “outcome.” We can then use the function adjustmentSets in
dagitty.

adjustmentSets(dag1)

## {}
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adjustmentSets(dag2)

## {}

adjustmentSets(dag3)

## {}

In each case we get the empty set. That means that in these DAGs we do
not want to condition on anything to understand the effect of Area on SVL. The
simple model would do it!

If, however, we were interested in the influence of Algae on SVL in the third
DAG we could use this code:

adjustmentSets(dag3, exposure = "Algae", outcome = "SVL")

## { Area, Nutr }

This means we would want to condition on both Area and Nutrients, but not
Density. Useful, no?

Again, you may not always have a simple solution. Perhaps the causal
structure is just tangled or you didn’t or couldn’t measure some important
variable. In certain cases you may not be able to obtain unbiased estimates of
the effects you want. But I think it is better to know this than to proceed in the
dark.

Simpson’s paradox

Proceeding by intuition or worse, just throwing variables into a regression and
hoping for the best, can lead to problems, big ones. A classic example is called
“Simpson’s paradox.” In it, the model structure is such that the estimated effect
of X on Y not only changes, but reverses sign, depending on which other
variables are included in the regression (i.e., conditioned on). It’s meant to
serve as a warning, so let’s see and then head this cautionary tale9. 9 This example and code is coming straight

from http://dagitty.net/learn/

simpson/index.html.
Here’s the DAG.

U

X Y

Z1

Z2

Z3

Figure 5: The DAG assumed in one version of
Simpson’s paradox

Remember that we are interested in understanding the effect of X on Y . If
it were you doing this, which covariate(s) would you include?

0

2

4

Nothing Z1 Z2 Z1 & Z2 Z1, Z2, Z3
Conditioned on

es
tim

at
e

Figure 6: Estimated effect of X on Y when in-
cluding various parameters in the regression
model. Vertical lines represent the 95 CI.

As you can see, if you just regress Y on X you see a very strong, positive
effect. However, if you condition on (include in the model) Z2 or both Z1 and
Z2 you get a negative effect of X on Y ! Only when you condition on either Z1

or Z1, Z2, and Z3 do you get the right sign and magnitude of the effect10!

10 Known in this case, because we simulated
it.

There are a few points to make. First, in this case we got the right answer
when we threw all of the measured variables into the model, but this is not
always the case. Sometimes those extra variables will the ones that give you

http://dagitty.net/learn/simpson/index.html
http://dagitty.net/learn/simpson/index.html
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the wrong magnitude or sign of the effect. Second, this does happen in real-
world situations. It is not simply an edge-case meant to scare you, but a real
effect that can really happen11. Third, we knew the right answer because we 11 Is that enough reals for you?

simulated the data, but if you were working with real-world data would you
know the right answer? Probably not! All we will know are the data we collected
and the DAG(s) we are willing to assume.

Some final notes

Using DAGs can help you make sense of the many statistical associations
between variables. They can help you focus on what you think is reasonable
and what you actually want to know. Sometimes they can help you toss out or
provisionally accept as consistent with the data certain causal models. Other
times they can help you see why you are hosed in sorting out the independent
effects you seek.

DAGs can also be useful in planning studies, sorting out what data you
will need to make the inference you desire. For instance, see what happens
if you treat a variable as observed vs. unobserved. DAGs become even more
useful if you use them to simulate data. That gives you a chance to see if your
planned analyses can distinguish between alternative causal models or provide
unbiased estimates of the causal influence of key variables. If you can recover
the True estimates from simulated data, this should give you some confidence
that you might be similarly successful with real data. If you can’t, perhaps you
need to redesign your study.

Finally, it is worth beating into our collective psyche that models cannot,
by themselves, tell us anything about causation. They can simply quantify
associations, in the case of statistical models, or show us the consequences
of the assumptions we are making, as with DAGs or other scientific models.
It takes us—hard working, harder thinking scientists—to decide on causal
relationships. I hope that giving you a brief introduction to DAGs might help in
this important goal.


	An Example
	What is a DAG?
	Drawing causal relationships
	Back to our example
	Implied conditional independencies
	A note on causation and statistics
	The four elemental relationships
	Closing the right doors
	Simpson's paradox
	Some final notes

