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A Froggy Example

You hypothesize size of amphibians at metamorphosis increases
with size of vernal ponds.

You have measured:

▶ The snout-vent-length, or SVL, of metamorphosing frogs
▶ Area of the ponds
▶ Nutrient concentrations entering the ponds (say, all sources

of nitrogen, for simplicity)
▶ The growth of algal biomass as Algae
▶ Density of tadpoles in the pond



The data, in all its glory
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What should you include in your regression?



Estimates effects depend on what is included. . . why?
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Figure 1: Estimated coefficients when estimated individually or in a full
model. Vertical lines are 95 percent CIs.



Statistics are association machines

It is up to us to interpret what they are telling us. We have not
(yet) done the hard work of figuring out how our statistics map on
to how we think the system works.

Enter the DAG



What is a DAG?

A “DAG” is a directed, acyclic graph.

▶ directed: arrows describe causal influence
▶ acyclic: no cycles or loops, no positive or negative feedbacks
▶ graph: nodes (=variables) connected by arrows (=causal

relationships)



Drawing a DAG

▶ Write out the important variables (both “predictors” and
“responses”)
▶ measured variables are unadorned: e.g., X , Y , Z
▶ unmeasured (or are unobserved) variables are circled: U⃝

▶ Draw arrows defining (assumed) causal relationships
connecting variables (e.g., X → Y means “changes in X
causes changes in Y”)
▶ We are not drawing the order of things
▶ We are not describing the direction or shape of relationships
▶ Arrows do not show interactions, either

▶ Keep it simple.
▶ Can draw different versions representing different hypotheses



Three possible DAGs for our frog example
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Implied conditional independencies
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See also http://dagitty.net/dags.htm

library(dagitty)
impliedConditionalIndependencies(dagitty("dag{
Algae <- Area -> SVL
Nutr -> Algae -> SVL <- Density
}"))

## Alga _||_ Dnst
## Area _||_ Dnst
## Area _||_ Nutr
## Dnst _||_ Nutr
## Nutr _||_ SVL | Alga, Area

http://dagitty.net/dags.htm


What do we mean by independent?

Quick and dirty definition: parameter estimate is essentially zero

coef(summary(lm(Density ~ Area)))

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.1138985 0.1061655 -1.072839 2.859780e-01
## Area 0.4953358 0.1075677 4.604875 1.240596e-05

Since Density⊥̸⊥ Area, DAG1 seems wrong. . .



Remember. . .

DAGs just tell us the (implied) consequences of the causal model
we assume.

We, as scientists, have to sort out what are reasonable models,
interpret model outputs, etc.



The four elemental relationships

1. Pipe: X → Z → Y

impliedConditionalIndependencies(dagitty("dag{X -> Z -> Y}"))

## X _||_ Y | Z

2. Confound: X ← Z → Y

impliedConditionalIndependencies(dagitty("dag{X <- Z -> Y}"))

## X _||_ Y | Z

Notice they have the same conditional independencies! Causation
flows one way, Information flows both ways.



The four elemental relationships

3. Collider: X → Z ← Y (Opposite of confound.)

impliedConditionalIndependencies(dagitty("dag{X -> Z <- Y}"))

## X _||_ Y

4. Descendant: Y↘
X↗ Z → D

impliedConditionalIndependencies(dagitty("dag{X -> Z <- Y; Z -> D}"))

## D _||_ X | Z
## D _||_ Y | Z
## X _||_ Y



Back to our example: What happened?

Why was Area ⊥⊥ SVL | Algae, Density, Nutr ?
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▶ Had conditioned on intermediaries in pipes!



Back to our example: What do we want?
We were interested in effect of Area on SVL

adjustmentSets(dag3, exposure = "Area", outcome = "SVL")

## {}

▶ All we need to do was regress SVL on Area and nothing else!
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Back to our example: What do we want?
If instead we were interested in influence of Algae on SVL (in 3rd
DAG)

adjustmentSets(dag3, exposure = "Algae", outcome = "SVL")

## { Area, Nutr }
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Simpson’s paradox
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Figure 2: A DAG in one version of Simpson’s paradox



Simpson’s paradox
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Magnitude and sign of estimated effect of X on Y depends on
what else is in the model!

▶ Throw in variables at your peril!



Some final thoughts

▶ DAGs can help make sense of statistical associations between
variables
▶ help you focus on what is reasonable and what you actually

want to know
▶ Sometimes can help you test causal models (implied

conditional independencies)
▶ Usually can help you find the meaning of parameter estimates

(assuming model is right)
▶ DAGs are useful in planning studies

▶ determine what variables you need
▶ useful for simulating data (and then analyzing)

▶ But DAGs are always assumed; you must decide what is
reasonable


