Reservoirs are a significant source of methane:

- Methane (CH₄) is a greenhouse gas 20-30x more powerful than carbon dioxide.
- Reservoirs (impoundments located behind dams) contribute 15-50 Tg of CH₄ to the atmosphere¹⁻².
- Previous work shows human-managed water level changes, such as drawdowns, are an important control on reservoir methane emissions¹⁻³.

Effects of Human Management Decisions on Reservoir Methane Emissions

How do human management decisions affect methane production, oxidation, and emissions in reservoirs?

Do reservoir drawdowns trigger higher CH₄ emissions?

- Study Sites: Lacamas Lake, WA; Keno Reservoir & JC Boyle Reservoir, OR
- Methods: Analyze C isotopes in dissolved & bubble CH₄; Compare emitted CH₄ isotope values before, during, and after drawdown (Lacamas);
 Compare emitted CH₄ isotope values between two reservoirs with different water level management (Keno & JC Boyle)
- Expected results: Emitted CH₄ during drawdowns will be isotopically lighter than stable periods because less methane oxidation is taking place
- Implications: If changing drawdown timing lowers CH₄ emissions, reservoir managers can schedule drawdowns accordingly to minimize greenhouse gas emissions

How does drawdown timing affect CH₄ emissions?

- Study Site: Lacamas Lake, WA
- Methods: Compare CH₄ emissions from drawdowns before turnover with emissions from a drawdown performed after turnover
- Expected results: Fall turnover mixes possible electron acceptors for methane oxidation with CH₄ in an oxygenated water column, encouraging methane oxidation and thus lowering emissions
- Implications: If changing drawdown timing lowers CH₄ emissions, reservoir managers can schedule drawdowns accordingly to minimize greenhouse gas emissions

How much CH₄ is outgassed versus oxidized during summertime spill in the Columbia River mainstem?

- Study Site: Bonneville Dam, OR/WA; The Dalles Dam, OR/WA
- Methods: Construct a CH₄ budget for before and during spill; Use a conservative tracer (Rn, Cl, Br) to track CH₄ during spill; Compare CH₄ oxidation rates before and during spill
- Expected Results: The majority of the CH₄ lost during spill will be outgassed rather than oxidized due to turbulence at the spillway.
- Implications: How CH₄ is lost through the system determines whether it is released as CH₄ (a powerful GHG) or CO₂ (a less powerful GHG)

References:

Acknowledgements:
This material is based upon work supported by the National Science Foundation Graduate Research Fellowship Program under Grant No. (224461). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.