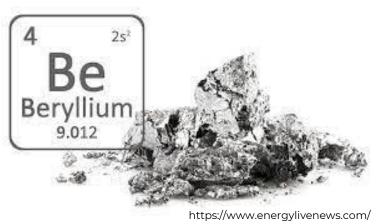


BERYLLIUM IN TISSUES OF FORMER NUCLEAR WORKERS

67th HPS Annual Meeting, 17 – 21 July 2022, Spokane, WA

M. Avtandilashvili¹, D. Larivière², N. Momoshima³, D. L. Arbova⁴, J. D. Brockman⁴, S. Y. Tolmachev¹


¹U.S. Transuranium and Uranium Registries, Washington State University ²Department of Chemistry, Laval University, Canada ³Kyushu Environmental Evaluation Association, Japan ⁴Department of Chemistry, University of Missouri – Columbia

USTUR-0537-20A

Beryllium Facts

- Steel-grey alkaline-earth metal
 - \checkmark stronger than steel and lighter than aluminum
 - high conductivity, melting point, and corrosion resistance

- Widely used in nuclear power industry and weapons production
 ✓ as neutron reflector and neutron moderator
 ✓ in plasma-facing components of fusion reactors
- Classified as a human carcinogen
- Prolonged inhalation can result in frequently fatal lung disease, berylliosis

Beryllium Exposure

- Trace amounts of beryllium are present in air, water and food
- Estimated daily intake of 0.18–0.32 µg from food and drinking water^a
- Most human exposure occurs in the workplace via inhalation
- Limited published data available on beryllium in human body^{b,c,d,e}

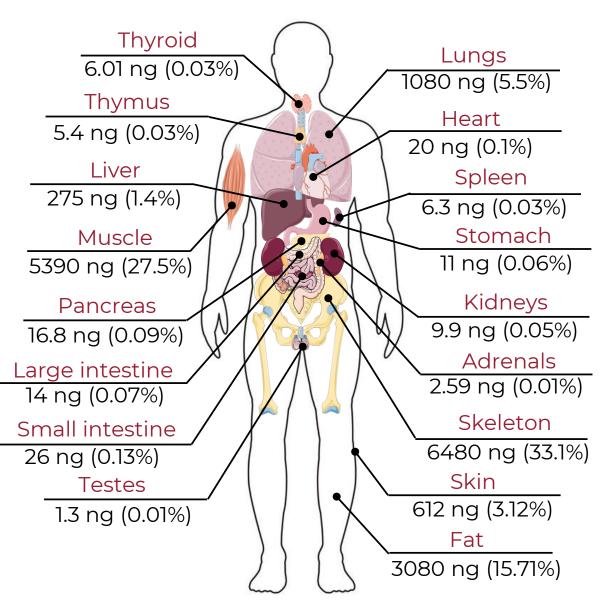
^aFillipini *et al.* Expo Health 12: 641–655; 2020 ^bForbes *et al.* J Biol Chem 209: 857–65; 1954 ^c Meehan and Smythe. Environ Sci Technol 1(10): 839–844; 1967 ^dSchepers. Diseases Chest 42(6): 600–607; 1962 ^eZhu *et al.* Health Phys 98(1): 61–73; 2010

Beryllium in Humans

- Zhu et al. (2010): 68 individuals
- Age: 20 60 y
- Body content: 19.6 µg

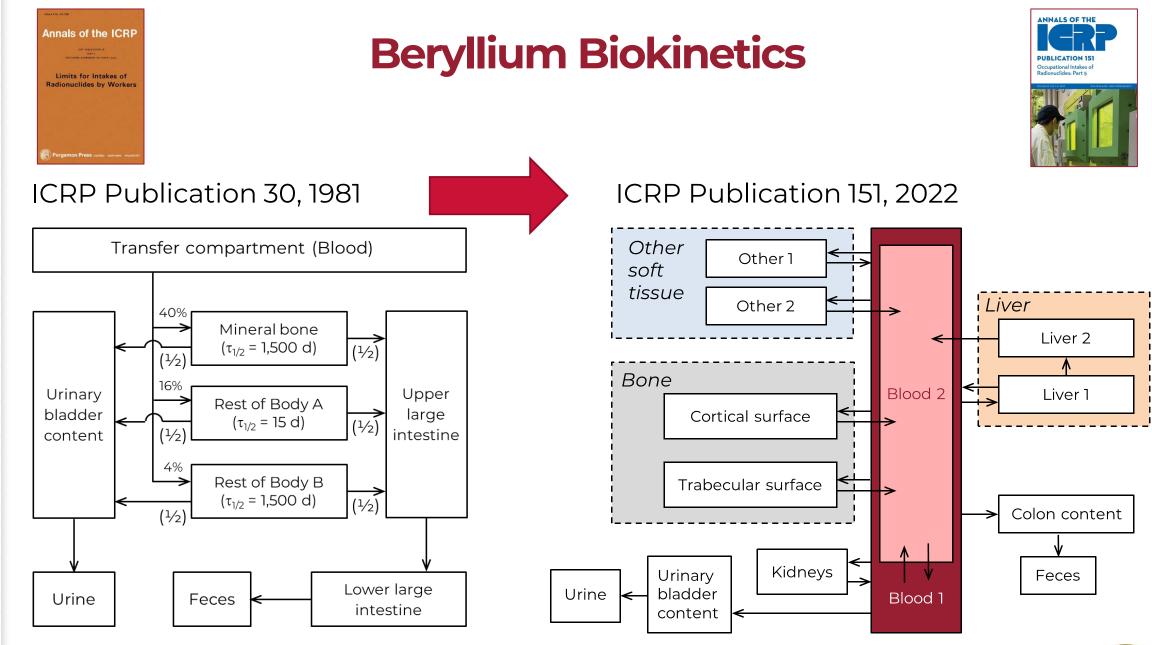
projects for Chinese Reference Man fro to widen and deepen the IAEA research i a summary report of the series rese content in main organs or tissues and Chinese adult men.

pted 5 August 2000

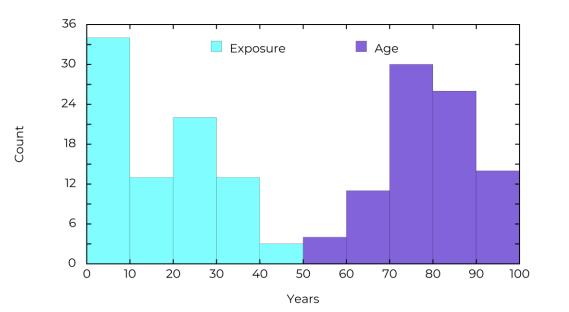

Convright © 2009 Health Physics Societ

DOI: 10.1097/HP.0b013e3181bad921

Occupational Intakes of Radionuclides: Part 5



67th HPS Annual Meeting, Spokane, WA, July 17 – 21, 2022



67th HPS Annual Meeting, Spokane, WA, July 17 – 21, 2022

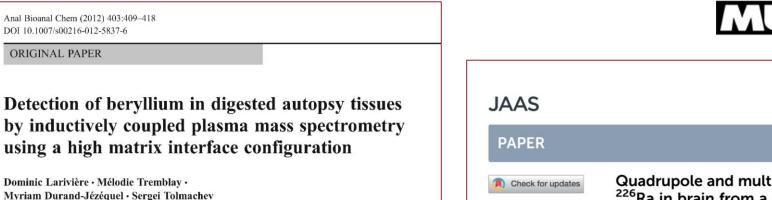
Beryllium at USTUR

- Self-reported exposure to beryllium: 106
- Exposure duration reported: 85
- Primary exposure: Pu (78), Am(1), U (6)
- Autopsy: 16 whole-body, 69 partial-body
- Age: 79 ± 10 y (50 99 y)

📑 USTUR 🗙 📑 Chemical Exposur	e ×										
👃 Chemical Exposure											
		From	То								
Beryllium	Y	1/1/1951	12/31/1955								
Chlorinate Solvents	Y										
Other Toxic chemicals	Ν										
Asbestos	Ν										
Benzene, Tolluene	Y	1/1/1968	12/31/1975								

Beryllium Tissue Analysis

- In-house tissue sample digestion
- No in-house measurement capabilities: non-radioactive element
- ⁹Be measured using ICP-MS
- 'Full' analysis: USTUR Case 0706 (105 samples)
- Survey analysis: 13 USTUR cases (57 samples)
- Brain analysis: Radium Dial Painter (5 samples)



ROYAL SOCIETY

OF **CHEMISTRY**

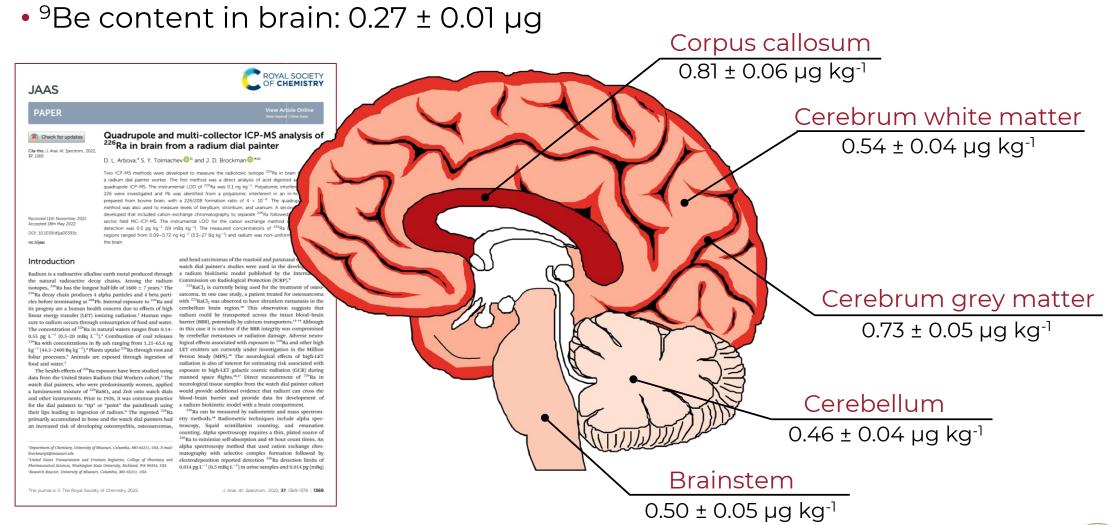
View Article Online

Quadrupole and multi-collector ICP-MS analysis of ²²⁶Ra in brain from a radium dial painter Cite this: J. Anal. At. Spectrom., 2022.

D. L. Arbova.^a S. Y. Tolmachev^b and J. D. Brockman^b

67th HPS Annual Meeting, Spokane, WA, July 17 – 21, 2022

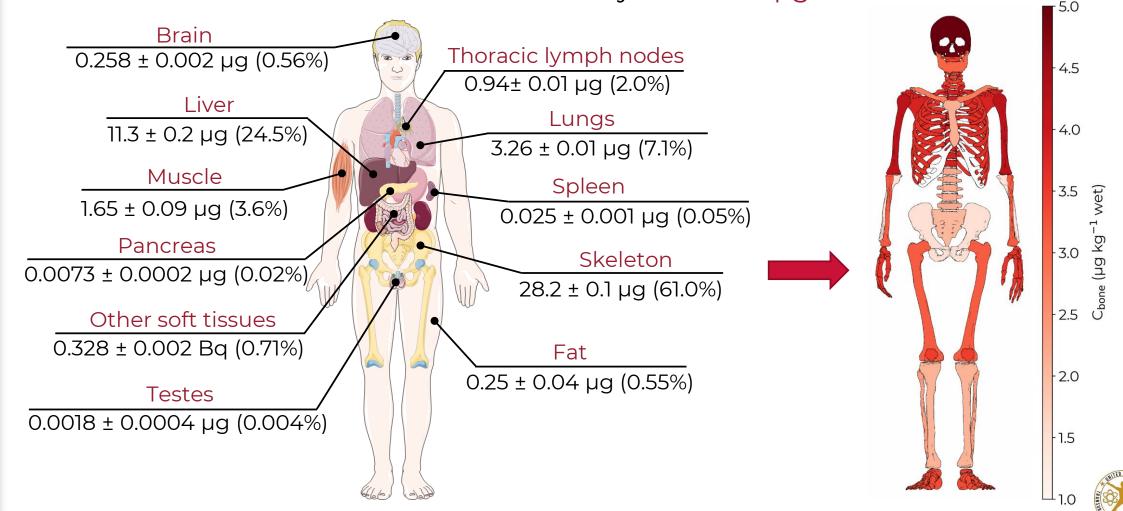
37.1369

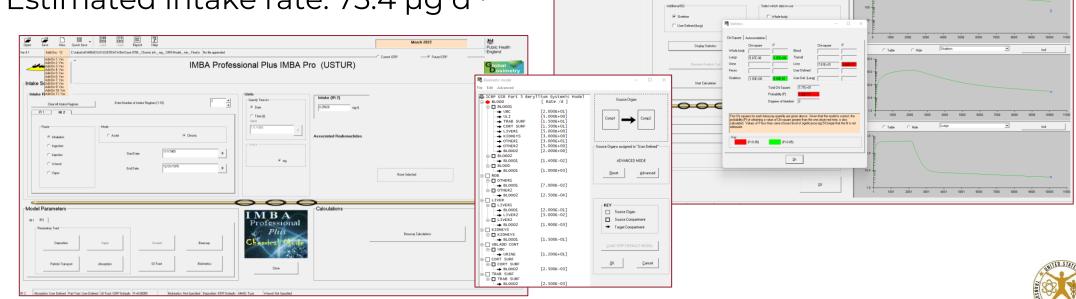


Survey Analysis Results

Case	Exposure (y)	⁹ Be Concentration (µg kg ⁻¹)							
		Respiratory system		Systemic soft tissues		Bones			
		Lung	LNTH	Liver	Kidney	Vert body	Rib	Femur MS	
0262	8	0.210±0.006	6.18±0.07					0.015±0.003	
0343	14	0.395±0.009	10.18±0.11	0.049±0.001	0.494±0.025	<dl< th=""><th><dl< th=""><th></th></dl<></th></dl<>	<dl< th=""><th></th></dl<>		
0407	8	<dl< th=""><th>14.99±0.74</th><th>0.461±0.009</th><th>0.536±0.021</th><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<>	14.99±0.74	0.461±0.009	0.536±0.021	<dl< th=""><th><dl< th=""><th></th></dl<></th></dl<>	<dl< th=""><th></th></dl<>		
0425	24		8.17±0.08		<dl< th=""><th><dl< th=""><th><dl< th=""><th>0.101±0.005</th></dl<></th></dl<></th></dl<>	<dl< th=""><th><dl< th=""><th>0.101±0.005</th></dl<></th></dl<>	<dl< th=""><th>0.101±0.005</th></dl<>	0.101±0.005	
0720	23	0.104±0.002	83.2±0.8					0.094±0.004	
0744	3	0.025±0.001	255±3					0.10±0.02	
0806	15	1.16±0.41	<dl< th=""><th><dl< th=""><th>1.49±0.52</th><th>21.3±7.3</th><th>5.1±1.5</th><th></th></dl<></th></dl<>	<dl< th=""><th>1.49±0.52</th><th>21.3±7.3</th><th>5.1±1.5</th><th></th></dl<>	1.49±0.52	21.3±7.3	5.1±1.5		
0817	38	0.082±0.005						0.159±0.007	
0834	26	<dl< th=""><th><dl< th=""><th>3.45±0.72</th><th>0.548±0.095</th><th>10.9±3.0</th><th><dl< th=""><th></th></dl<></th></dl<></th></dl<>	<dl< th=""><th>3.45±0.72</th><th>0.548±0.095</th><th>10.9±3.0</th><th><dl< th=""><th></th></dl<></th></dl<>	3.45±0.72	0.548±0.095	10.9±3.0	<dl< th=""><th></th></dl<>		
0846	20		334±74	19.6±4.1		33448±347†	68.1±12.3		
0990	20	8.67±1.08	148±44	812±15	2.99±0.53	15.9±1.0	6.39±1.19		
1002	27							0.033±0.004	
GM (GSD)	16 (2)	0.29 (6.9)	41.6 (5.2)	4.16 (40.5)	0.92 (2.2)	15.4 (1.4)	13.0 (4.2)	0.065 (2.4)	

Beryllium Distribution in Brain



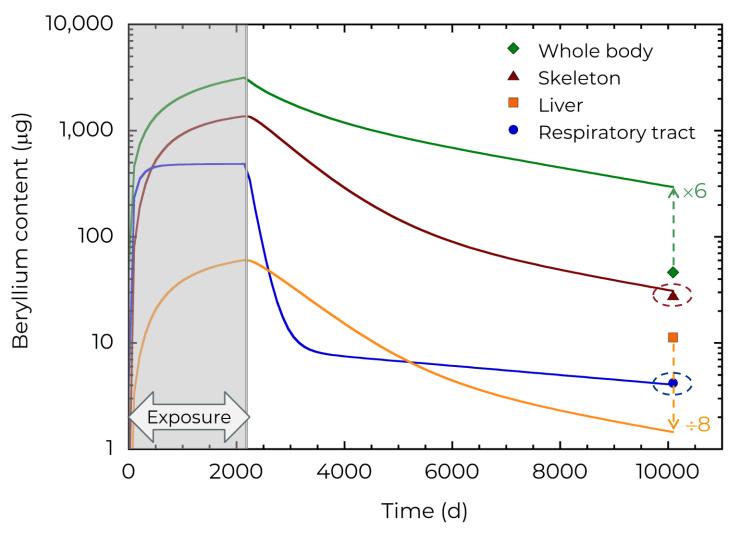

Beryllium in USTUR Case 0706

- Self-reported exposure duration: 6 y
- Estimated total ⁹Be content in whole body: $46.3 \pm 0.2 \mu g$

Modeling USTUR Case 0706 Data

- Software: IMBA Professional Plus USTUR research version
- Models: ICRP 130 HRTM, ICRP 151 Be systemic model
- Bioassay: Post-mortem contents in lungs, liver, and skeleton
- Intake scenario: Chronic inhalation
- Material type: 99.6% M and 0.4% S
- Estimated intake rate: 73.4 µg d⁻¹

INTAKES


CALCULATION

Bioassay Calculations

Tissue Retention: Model vs Measurement

ICRP 130 human respiratory tract and ICRP 151 systemic models:

- predict reasonably well respiratory tract and skeleton
- underestimate liver
- overestimate whole body

Summary

- Beryllium concentrations measured in tissues from former nuclear workers with self-reported occupational exposure
- First time, distribution and retention of beryllium was studied in whole body of exposed individual:

skeleton (61.0%) > liver (24.5%) > respiratory tract (9.1%) > other tissues (5.4%)

- ICRP 151 beryllium systemic model underestimates liver content and overestimates whole-body content
- Survey analysis indicated four potential cases for further study

QUESTIONS?

m.avtandilashvili@wsu.edu

