Modeling the long-term retention of plutonium in the respiratory tract using scar-tissue compartments

Deepesh Poudel¹, Maia Avtandilashvili², John Klumpp¹, Luiz Bertelli¹, Sergei Tolmachev²

¹Internal Dosimetry, Los Alamos National Laboratory ²USTUR, Washington State University

July 28, 2021

Further reading

--Paper------

Long-term Retention of Plutonium in the Respiratory Tracts of Two Acutely-exposed Workers: Estimation of Bound Fraction

Deepesh Poudel, Maia Avtandilashvili, Luiz Bertelli, John A. Klumpp, and Sergei Y. Tolmachev

Journal of Radiological Protection

ACCEPTED MANUSCRIPT

Modelling of long-term retention of high-fired plutonium oxide in the human respiratory tract: importance of scar-tissue compartments

To cite this article before publication: Deepesh Poudel et al 2020 J. Radiol. Prot. in press https://doi.org/10.1088/1361-6498/abca49

MODELLING THE LONG-TERM RETENTION OF PLUTONIUM IN THE HUMAN RESPIRATORY TRACT USING SCAR-TISSUE COMPARTMENTS

Deepesh Poudel^{1,*}, Maia Avtandilashvili², John A Klumpp¹, Luiz Bertelli¹, Sergei Y Tolmachev²
¹Radiation Protection Division, Los Alamos National Laboratory, Los Alamos, NM, USA
²United States Transuranium and Uranium Registries, Washington State University, Richland, WA, USA

The Human Respiratory Tract Model¹

¹ICRP 130. Ann. ICRP 44(2)

Studies on Binding of Plutonium

- Plutonium bound fraction inferred from three studies
 - USTUR Case 0269 autopsy and bioassay data^{2,5}: $f_b = 0.037$
 - Lung-retention data from 15-year life-span beagle study^{3,5}: $f_b = 0.0023$
 - Autopsy data from 40 Mayak workers^{4,5}: $f_b = 0.0014$
- ICRP recommendation⁶: $f_b = 0.002$, $s_b = 0$

²Puncher et al. Radiat. Prot. Dosim. 176(1-2), 50-61; 2017

³Puncher et al. Radiat Prot. Dosim. 176(1-2), 32-44; 2017

⁴Puncher et al. Radiat. Prot. Dosim. 176(1-2), 62-40; 2017

⁵Birchall et al. Health Phys. 117(2), 133-142; 2019

⁶ICRP 141. Ann. ICRP. 48(2/3); 2019.

Dose Consequence of Binding

Table 1. Impact of bound fraction assumption (0.2% vs 0) on 50-y committed dose for inhalation of Pu nitrates

Target region	% increase
ET region (ET)	23.1%
Basal cells of anterior nasal passages (ET1-bas)	-0.06%
Basal cells of posterior nasal passages + pharynx (ET2-bas)	23.1%
Lung	41.0%
Basal cells of bronchi (Bronchi-bas)	99.6%
Secretory cells of bronchi (Bronchi-sec)	181%
Secretory cells of bronchioles (Brchiol-sec)	49.2%
Alveolar-interstitium (AI)	9.88%
Lymph nodes, total	3.47%
Lymph nodes of the ET region (LN-ET)	6.03%
Lymph nodes in the thoracic region (LN-Th)	5.93%
Systemic lymph nodes (LN-Sys)	-0.20%
Effective dose	7.67%

Objectives

- Epidemiological studies show association between lung cancer and lung doses
- Important to characterize critical parameters such as binding
- Objectives:
 - Compare current model of binding against observations (USTUR data and literature)
 - Analyze USTUR data using a modified model structure

Data

Table 2. Summary of data

USTUR Case 0269

Incident: internal (and external) contamination following release

of plutonium

Reported intake: acidic Pu(NO₃)₄ mist

Death: 39y post intake

Data available: 24h urine; blood; feces; sputum; retention in respiratory tract tissues, liver, skeleton, other soft tissues.

USTUR Case 0745

Incident: splattering of solution Reported intake: soluble Pu(NO₃)₄

Death: 59y post intake

Data available: 24h urine; retention in respiratory tract

tissues, liver, skeleton, other soft tissues.

USTUR Case 0631

Incident: tearing open equipment while working on wet

purification process

Reported intake: most likely Pu(NO₃)₄

Death: 66y post intake

Data available: 24h urine; retention in respiratory tract

tissues, liver, skeleton, other soft tissues.

USTUR Case 0407

Incident: inhalation of aerosols released from plutonium glove-

box fire

Reported intake: high-fired PuO₂

Death: 42y post intake

Data available: 24h urine; 24h feces; lung counts; retention in respiratory tract tissues, liver, skeleton, other soft tissues.

Data

• Data on regional retention in lungs

Table 3. Post-mortem data

Region	²³⁹ Pu retention at death (Bq)			
	Case 0269	Case 0631	Case 0745	Case 0407
Respiratory tract				
Larynx (ET ₂)	2.16 ± 0.02	0.18 ± 0.01	0.44 ± 0.02	0.17 ± 0.01
Bronchi (BB)	5.62 ± 0.03	0.64 ± 0.00	3.49 ± 0.11	145.6 ± 6.1
Bronchiole (bb)	2.08 ± 0.01	0.24 ± 0.02	1.47 ± 0.06	87.2 ± 3.8
Alveolar-interstitium (AI)	16.79 ± 0.11	2.54 ± 0.11	29.4 ± 0.7	704.4 ± 43.5
Thoracic lymph nodes (LNTH)	0.45 ± 0.06	2.71 ± 0.08	21.8 ± 0.5	1135.6 ± 20.4
Liver + Skeleton	2120 ± 22^a	234.8 ± 83.4	454 ± 55	299.5 ± 74.6

^aNot used in modeling because the systemic activity is affected by several chelation treatments.

Need for binding

- USTUR Case 0269:
 - − ~1% of intake retained in the lungs several years after intake⁷
 - Inconsistent with known behavior of soluble plutonium
 - Regional retention shows activity in the upper respiratory tract

Table 4. Effects of different model assumptions on retention in upper respiratory tract after inhalation of 5 µm AMAD plutonium nitrate

	$A_{ m URT/RT}$		
No binding and:			
default model parameters	2.5×10^{-8}		
$f_{ m seq}=0.01^{ m a}$	1.3×10^{-7}		
$K_{\mathrm{PT}},K_{\mathrm{PT(seq)}}=0.2^{\mathrm{b}}$	1.9×10^{-3}		
Measured for Case 0269	$\boldsymbol{0.364 \pm 0.002}$		
Binding, $f_b = 0.002$	0.07		
^a The fraction deposited into ET _{seq} , Bb _{seq} and bb _{seq}			
compartments was increased from 0.002 to 0.1			

^aThe fraction deposited into ET_{seq}, Bb_{seq} and bb_{seq} compartments was increased from 0.002 to 0.1. ^bAll mechanical transport rates in the ET, BB and bb compartments were decreased by five times.

⁷James et al. Radiat. Prot. Dosim. 127(1-4), 449-455; 2007

Issues with Binding

• Estimated bound fraction found to be dependent on solubility

Table 5. Published values of bound fraction

Table 5.1 ublished values of bound fraction				
Subject(s)	Material	$f_b(\%)$		
ICRP default ⁽⁶⁾	Independent of solubility 0.2			
USTUR Case 0269 ^(2, 5)	Nitrate	0.7ª		
	Nitrate			
Beagles ^(3, 5)	Nitrate	0.2c		
	Nitrate	0.8 ^d		
Mayak workers5)	Nitrate	0.1		
Mayak workers(8)	Nitrate	0.3e		
"Case 110"(9)	Type M	5.3 ^f		
USTUR Case 0631(10)	Mixture	1 ^g		
USTUR Case 0745 (10)	Mixture	4 ^g		
Mayak workers(8)	Mixture	3-7e		
"Case 080"(9)	Type S ^e	56.2 ^f		
Mayak workers(11)	Oxides	4.7		
Mayak workers(8)	Oxides	15-19e		
USTUR Case 0407 ⁽¹²⁾	High-fired Oxide	cannot be explained		

^aUsing measured (at autopsy) liver+skeleton activity

bUsing predicted (without DTPA treatment) liver+skeleton activity

^cUsing DRTM-66 (ICRP 66 HRTM modified for dogs)

^dUsing DRTM-OIR (ICRP 130 HRTM modified for dogs)

eUsing modified ICRP-66 HRTM

fUsing ICRP-66 HRTM

^gSolubility between that of plutonium nitrate and mixed oxides

⁹Khokhryakov et al. Health Phys. 88(2), 125-132 (2005).

¹⁰Poudel et al. Health Phys. 120(3), 258-270; 2021

¹¹Birchall et al. Radiat. Prot. Dosim. 105(1-4), 85-90; 2003

¹²Poudel et al. J. Radiat. Prot. In press; 2021.

Issues with binding

• Data for USTUR Case 0407 not explained by bound fraction

Table 6. Effects of different assumptions on retention of Pu dioxides in the respiratory tract

	$R_{TB/Lung}$
Measured	0.25 ± 0.01
Default model parameters	5.54×10^{-6}
Assumption:	
$f_{seq}=0.01^{ m a}$	5.84×10^{-6}
$K_{PT},K_{PT(Seq)}=0.2^{b}$	5.58×10^{-4}
$f_b = 1^{c}$	2.22×10^{-3}

^aSequestration increased from default of 0.002 to 0.01

- Autoradiography showed alpha star aggregates localized within connective tissue ^{13,14}
 - Inconsistent with presence of bound state

^bParticle-transport rates decreased by five times

^cBound fraction increased from default of 0.002 to 1 as an extreme scenario

¹³Nielsen et al. Cancer Res. 72(21), 5529-5536; 2012

¹⁴Nielsen et al. Int. J. Radiat. Biol. 90(1), 60-70; 2014

"Physical" vs "Chemical" binding?

- Several observations inconsistent with bound fraction
- Could it be scar tissues ("physical" binding)?
 - Significant alpha doses to small volume of tissues may result in scarring/fibrosis
 - Plenty of evidence of fibrotic scar tissues in the literature:
 - Registry of 188 cases of plutonium-induced lung fibrosis among Mayak workers¹⁵
 - Study of Rocky Flats worker showed individuals with lung doses > 10 Sv or greater likely to have abnormal chest x-ray¹⁶
 - Fibrosis also observed in mice¹⁷, rats¹⁸, dogs¹⁹ and baboons²⁰

Los Alamos National Laboratory 8/16/2021

¹⁵Azizova et al. Health Phys. 118 185-192; 2020

¹⁶Newman et al. Radiat. Res. 164 123-131; 2005

¹⁷Talbot and Moores Radiat, Res. 103 135-148: 1985

¹⁸Sanders et al. Int. J. Radiat. Biol. 64 107-130: 1993

¹⁹Wilson Health Phys. 96 175-185; 2009

²⁰Bair et al. Radiat. Res. 82 588-610: 1980

The Scar-tissue Approach

- Encapsulation of plutonium in scar tissues
 - Plutonium 'hot spots' deliver high doses to a small volume of tissues resulting in scar tissues
 - − Literature review points to the presence of − and significant retention of − plutonium in scar tissues⁽²¹⁻²³⁾
 - Fibrosis of tissue immobilizes plutonium
- "Physical" binding compared to "chemical" binding
 - -Less dosimetrically significant
 - Irradiation of scar-tissues vs. sensitive epithelial tissues

Los Alamos National Laboratory 8/16/2021

²¹Guilmette et al. Radiat. Prot. Dosim. 99(1-4), 457-461; 2021

²²Hahn et al. Radiat. Prot. Dosim. 105(1-4), 81-84; 2003

²³Hahn et al. Radiat. Res. 161(5), 568-581; 2004

Proposed Model

Los Alamos National Laboratory 8/16/2021

Results and Discussion

- Priors from several previous studies
- Posterior distributions obtained from Markov-chain Monte Carlo analysis

15

Results and Discussion

• Case 0407 as an example:

Los Alamos National Laboratory 8/16/2021

Results and Discussion

- Very small fraction of intake retained in the scar-tissue compartments
 - -1.5×10^{-4} , 6.2 × 10⁻⁵, 6.7 × 10⁻⁴, and 5.0 × 10⁻³ for Cases 0269, 0631, 0745, and 0407 respectively
- Significant fraction of activity in the lungs in scar-tissues
 - Consistent with the literature

17

Conclusions

- Chemical binding alone is not consistent with data and observations in the literature
- A significant fraction of activity in the respiratory tract is found to be retained in scar tissues
- We successfully explained regional retention of plutonium in the respiratory tract of four cases using scar-tissue model
- Other mechanisms can also be responsible
 - Some combination of physical and chemical binding, or systemic uptake of plutonium by the lungs
 - Study of wound case planned to investigate the latter

Los Alamos National Laboratory 8/16/2021

LANL Disclaimer

The submitted materials have been authored by employees of Triad National Security, LLC (Triad) under contract with the U.S. Department of Energy/National Nuclear Security Administration (DOE/NNSA). Accordingly, the U.S. Government retains an irrevocable, nonexclusive, royalty-free license to publish, translate, reproduce, use, or dispose of the published form of the work and to authorize others to do the same for U.S. Government purposes.

Questions?

dpoudel@lanl.gov

Los Alamos National Laboratory 8/16/2021