Modeling the long-term retention of plutonium in the respiratory tract using scar-tissue compartments Deepesh Poudel¹, Maia Avtandilashvili², John Klumpp¹, Luiz Bertelli¹, Sergei Tolmachev² ¹Internal Dosimetry, Los Alamos National Laboratory ²USTUR, Washington State University July 28, 2021 ### **Further reading** --Paper------ #### Long-term Retention of Plutonium in the Respiratory Tracts of Two Acutely-exposed Workers: Estimation of Bound Fraction Deepesh Poudel, Maia Avtandilashvili, Luiz Bertelli, John A. Klumpp, and Sergei Y. Tolmachev Journal of Radiological Protection #### ACCEPTED MANUSCRIPT Modelling of long-term retention of high-fired plutonium oxide in the human respiratory tract: importance of scar-tissue compartments To cite this article before publication: Deepesh Poudel et al 2020 J. Radiol. Prot. in press https://doi.org/10.1088/1361-6498/abca49 ## MODELLING THE LONG-TERM RETENTION OF PLUTONIUM IN THE HUMAN RESPIRATORY TRACT USING SCAR-TISSUE COMPARTMENTS Deepesh Poudel^{1,*}, Maia Avtandilashvili², John A Klumpp¹, Luiz Bertelli¹, Sergei Y Tolmachev² ¹Radiation Protection Division, Los Alamos National Laboratory, Los Alamos, NM, USA ²United States Transuranium and Uranium Registries, Washington State University, Richland, WA, USA ### The Human Respiratory Tract Model¹ ¹ICRP 130. Ann. ICRP 44(2) ### **Studies on Binding of Plutonium** - Plutonium bound fraction inferred from three studies - USTUR Case 0269 autopsy and bioassay data^{2,5}: $f_b = 0.037$ - Lung-retention data from 15-year life-span beagle study^{3,5}: $f_b = 0.0023$ - Autopsy data from 40 Mayak workers^{4,5}: $f_b = 0.0014$ - ICRP recommendation⁶: $f_b = 0.002$, $s_b = 0$ ²Puncher et al. Radiat. Prot. Dosim. 176(1-2), 50-61; 2017 ³Puncher et al. Radiat Prot. Dosim. 176(1-2), 32-44; 2017 ⁴Puncher et al. Radiat. Prot. Dosim. 176(1-2), 62-40; 2017 ⁵Birchall et al. Health Phys. 117(2), 133-142; 2019 ⁶ICRP 141. Ann. ICRP. 48(2/3); 2019. ### **Dose Consequence of Binding** **Table 1.** Impact of bound fraction assumption (0.2% vs 0) on 50-y committed dose for inhalation of Pu nitrates | Target region | % increase | |---|------------| | ET region (ET) | 23.1% | | Basal cells of anterior nasal passages (ET1-bas) | -0.06% | | Basal cells of posterior nasal passages + pharynx (ET2-bas) | 23.1% | | Lung | 41.0% | | Basal cells of bronchi (Bronchi-bas) | 99.6% | | Secretory cells of bronchi (Bronchi-sec) | 181% | | Secretory cells of bronchioles (Brchiol-sec) | 49.2% | | Alveolar-interstitium (AI) | 9.88% | | Lymph nodes, total | 3.47% | | Lymph nodes of the ET region (LN-ET) | 6.03% | | Lymph nodes in the thoracic region (LN-Th) | 5.93% | | Systemic lymph nodes (LN-Sys) | -0.20% | | Effective dose | 7.67% | ### **Objectives** - Epidemiological studies show association between lung cancer and lung doses - Important to characterize critical parameters such as binding - Objectives: - Compare current model of binding against observations (USTUR data and literature) - Analyze USTUR data using a modified model structure ### Data #### Table 2. Summary of data #### USTUR Case 0269 Incident: internal (and external) contamination following release of plutonium Reported intake: acidic Pu(NO₃)₄ mist Death: 39y post intake Data available: 24h urine; blood; feces; sputum; retention in respiratory tract tissues, liver, skeleton, other soft tissues. #### USTUR Case 0745 Incident: splattering of solution Reported intake: soluble Pu(NO₃)₄ Death: 59y post intake Data available: 24h urine; retention in respiratory tract tissues, liver, skeleton, other soft tissues. #### USTUR Case 0631 Incident: tearing open equipment while working on wet purification process Reported intake: most likely Pu(NO₃)₄ Death: 66y post intake Data available: 24h urine; retention in respiratory tract tissues, liver, skeleton, other soft tissues. #### USTUR Case 0407 Incident: inhalation of aerosols released from plutonium glove- box fire Reported intake: high-fired PuO₂ Death: 42y post intake Data available: 24h urine; 24h feces; lung counts; retention in respiratory tract tissues, liver, skeleton, other soft tissues. ### Data • Data on regional retention in lungs Table 3. Post-mortem data | Region | ²³⁹ Pu retention at death (Bq) | | | | |-----------------------------|---|------------------|-----------------|-------------------| | | Case 0269 | Case 0631 | Case 0745 | Case 0407 | | Respiratory tract | | | | | | Larynx (ET ₂) | 2.16 ± 0.02 | 0.18 ± 0.01 | 0.44 ± 0.02 | 0.17 ± 0.01 | | Bronchi (BB) | 5.62 ± 0.03 | 0.64 ± 0.00 | 3.49 ± 0.11 | 145.6 ± 6.1 | | Bronchiole (bb) | 2.08 ± 0.01 | 0.24 ± 0.02 | 1.47 ± 0.06 | 87.2 ± 3.8 | | Alveolar-interstitium (AI) | 16.79 ± 0.11 | 2.54 ± 0.11 | 29.4 ± 0.7 | 704.4 ± 43.5 | | Thoracic lymph nodes (LNTH) | 0.45 ± 0.06 | 2.71 ± 0.08 | 21.8 ± 0.5 | 1135.6 ± 20.4 | | Liver + Skeleton | 2120 ± 22^a | 234.8 ± 83.4 | 454 ± 55 | 299.5 ± 74.6 | ^aNot used in modeling because the systemic activity is affected by several chelation treatments. ### **Need for binding** - USTUR Case 0269: - − ~1% of intake retained in the lungs several years after intake⁷ - Inconsistent with known behavior of soluble plutonium - Regional retention shows activity in the upper respiratory tract Table 4. Effects of different model assumptions on retention in upper respiratory tract after inhalation of 5 µm AMAD plutonium nitrate | | $A_{ m URT/RT}$ | | | |--|--------------------------------|--|--| | No binding and: | | | | | default model parameters | 2.5×10^{-8} | | | | $f_{ m seq}=0.01^{ m a}$ | 1.3×10^{-7} | | | | $K_{\mathrm{PT}},K_{\mathrm{PT(seq)}}=0.2^{\mathrm{b}}$ | 1.9×10^{-3} | | | | Measured for Case 0269 | $\boldsymbol{0.364 \pm 0.002}$ | | | | Binding, $f_b = 0.002$ | 0.07 | | | | ^a The fraction deposited into ET _{seq} , Bb _{seq} and bb _{seq} | | | | | compartments was increased from 0.002 to 0.1 | | | | ^aThe fraction deposited into ET_{seq}, Bb_{seq} and bb_{seq} compartments was increased from 0.002 to 0.1. ^bAll mechanical transport rates in the ET, BB and bb compartments were decreased by five times. ⁷James et al. Radiat. Prot. Dosim. 127(1-4), 449-455; 2007 ### **Issues with Binding** • Estimated bound fraction found to be dependent on solubility Table 5. Published values of bound fraction | Table 5.1 ublished values of bound fraction | | | | | |---|-------------------------------|------------------------|--|--| | Subject(s) | Material | $f_b(\%)$ | | | | ICRP default ⁽⁶⁾ | Independent of solubility 0.2 | | | | | USTUR Case 0269 ^(2, 5) | Nitrate | 0.7ª | | | | | Nitrate | | | | | Beagles ^(3, 5) | Nitrate | 0.2c | | | | | Nitrate | 0.8 ^d | | | | Mayak workers5) | Nitrate | 0.1 | | | | Mayak workers(8) | Nitrate | 0.3e | | | | "Case 110"(9) | Type M | 5.3 ^f | | | | USTUR Case 0631(10) | Mixture | 1 ^g | | | | USTUR Case 0745 (10) | Mixture | 4 ^g | | | | Mayak workers(8) | Mixture | 3-7e | | | | "Case 080"(9) | Type S ^e | 56.2 ^f | | | | Mayak workers(11) | Oxides | 4.7 | | | | Mayak workers(8) | Oxides | 15-19e | | | | USTUR Case 0407 ⁽¹²⁾ | High-fired Oxide | cannot be
explained | | | ^aUsing measured (at autopsy) liver+skeleton activity bUsing predicted (without DTPA treatment) liver+skeleton activity ^cUsing DRTM-66 (ICRP 66 HRTM modified for dogs) ^dUsing DRTM-OIR (ICRP 130 HRTM modified for dogs) eUsing modified ICRP-66 HRTM fUsing ICRP-66 HRTM ^gSolubility between that of plutonium nitrate and mixed oxides ⁹Khokhryakov et al. Health Phys. 88(2), 125-132 (2005). ¹⁰Poudel et al. Health Phys. 120(3), 258-270; 2021 ¹¹Birchall et al. Radiat. Prot. Dosim. 105(1-4), 85-90; 2003 ¹²Poudel et al. J. Radiat. Prot. In press; 2021. ### **Issues with binding** • Data for USTUR Case 0407 not explained by bound fraction **Table 6.** Effects of different assumptions on retention of Pu dioxides in the respiratory tract | | $R_{TB/Lung}$ | |------------------------------|-----------------------| | Measured | 0.25 ± 0.01 | | Default model parameters | 5.54×10^{-6} | | Assumption: | | | $f_{seq}=0.01^{ m a}$ | 5.84×10^{-6} | | $K_{PT},K_{PT(Seq)}=0.2^{b}$ | 5.58×10^{-4} | | $f_b = 1^{c}$ | 2.22×10^{-3} | ^aSequestration increased from default of 0.002 to 0.01 - Autoradiography showed alpha star aggregates localized within connective tissue ^{13,14} - Inconsistent with presence of bound state ^bParticle-transport rates decreased by five times ^cBound fraction increased from default of 0.002 to 1 as an extreme scenario ¹³Nielsen et al. Cancer Res. 72(21), 5529-5536; 2012 ¹⁴Nielsen et al. Int. J. Radiat. Biol. 90(1), 60-70; 2014 ### "Physical" vs "Chemical" binding? - Several observations inconsistent with bound fraction - Could it be scar tissues ("physical" binding)? - Significant alpha doses to small volume of tissues may result in scarring/fibrosis - Plenty of evidence of fibrotic scar tissues in the literature: - Registry of 188 cases of plutonium-induced lung fibrosis among Mayak workers¹⁵ - Study of Rocky Flats worker showed individuals with lung doses > 10 Sv or greater likely to have abnormal chest x-ray¹⁶ - Fibrosis also observed in mice¹⁷, rats¹⁸, dogs¹⁹ and baboons²⁰ Los Alamos National Laboratory 8/16/2021 ¹⁵Azizova et al. Health Phys. 118 185-192; 2020 ¹⁶Newman et al. Radiat. Res. 164 123-131; 2005 ¹⁷Talbot and Moores Radiat, Res. 103 135-148: 1985 ¹⁸Sanders et al. Int. J. Radiat. Biol. 64 107-130: 1993 ¹⁹Wilson Health Phys. 96 175-185; 2009 ²⁰Bair et al. Radiat. Res. 82 588-610: 1980 ### The Scar-tissue Approach - Encapsulation of plutonium in scar tissues - Plutonium 'hot spots' deliver high doses to a small volume of tissues resulting in scar tissues - − Literature review points to the presence of − and significant retention of − plutonium in scar tissues⁽²¹⁻²³⁾ - Fibrosis of tissue immobilizes plutonium - "Physical" binding compared to "chemical" binding - -Less dosimetrically significant - Irradiation of scar-tissues vs. sensitive epithelial tissues Los Alamos National Laboratory 8/16/2021 ²¹Guilmette et al. Radiat. Prot. Dosim. 99(1-4), 457-461; 2021 ²²Hahn et al. Radiat. Prot. Dosim. 105(1-4), 81-84; 2003 ²³Hahn et al. Radiat. Res. 161(5), 568-581; 2004 ### **Proposed Model** Los Alamos National Laboratory 8/16/2021 ### **Results and Discussion** - Priors from several previous studies - Posterior distributions obtained from Markov-chain Monte Carlo analysis 15 ### **Results and Discussion** • Case 0407 as an example: Los Alamos National Laboratory 8/16/2021 ### **Results and Discussion** - Very small fraction of intake retained in the scar-tissue compartments - -1.5×10^{-4} , 6.2 × 10⁻⁵, 6.7 × 10⁻⁴, and 5.0 × 10⁻³ for Cases 0269, 0631, 0745, and 0407 respectively - Significant fraction of activity in the lungs in scar-tissues - Consistent with the literature 17 ### **Conclusions** - Chemical binding alone is not consistent with data and observations in the literature - A significant fraction of activity in the respiratory tract is found to be retained in scar tissues - We successfully explained regional retention of plutonium in the respiratory tract of four cases using scar-tissue model - Other mechanisms can also be responsible - Some combination of physical and chemical binding, or systemic uptake of plutonium by the lungs - Study of wound case planned to investigate the latter Los Alamos National Laboratory 8/16/2021 ### LANL Disclaimer The submitted materials have been authored by employees of Triad National Security, LLC (Triad) under contract with the U.S. Department of Energy/National Nuclear Security Administration (DOE/NNSA). Accordingly, the U.S. Government retains an irrevocable, nonexclusive, royalty-free license to publish, translate, reproduce, use, or dispose of the published form of the work and to authorize others to do the same for U.S. Government purposes. Questions? dpoudel@lanl.gov Los Alamos National Laboratory 8/16/2021