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Neology

•Neology means “making up new words”

•Many of the greatest scientists in human history would not recognize so many 

of the words we use today

•Aristotle, Archimedes, Ptolemy, the folks who invented zero, Galileo, 

Copernicus, Newton, Darwin, Pasteur, and Maxwell wouldn’t have 

understood radioactivity, x-rays, relativity, quantum mechanics, 

contraception, black holes, refrigerators, or smart phones

•We need to do neology now and then when old words don’t suffice

•Sometime late in the last century, someone invented a new word: measurand



Measurand

•When making a measurement, what is “the quantity intended to be 

measured?” 

•That phrase is the definition of “measurand” that appears in the latest 

version of the International Vocabulary of Metrology (the VIM). 

3



Overview

•Measurand

•The VIM and the GUM

•From the Error Model to the Uncertainty Model

•Measurands and results of measurements

•Variability, uncertainty, bias, error, and blunder (throughout)

•Probabilistic statements about the possible values of the measurand given 

the measurement result(s)

•Example: Counting a long-lived radionuclide

• Is anything there? Decision rules like decision level DL (aka decision 

threshold DT

•The smallest usually detectable measurand (SUDM), formerly MDA



Quantities and Units

•The International System of Units (SI) is 

owned by the CGPM, of which USA, 

through NIST, is a partner

•The free 2019 SI “brochure” is available at 
https://www.bipm.org/en/publications/si-brochure/

•Relevant NIST documents are at 

physics.nist.gov/cuu

 NIST is boss in the USA!

•As of 2019, all 7 fundamental quantities 

are based on physical constants, no longer 

on artifacts like the Pt-Ir kilogram in Paris
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Free Downloads of the VIM and the GUM

• International Vocabulary of Metrology 

(VIM) 
https://www.bipm.org/en/publications/guides/#vim
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• Guide to the Expression of Uncertainty 

in Measurement (GUM) 
https://www.bipm.org/en/publications/guides/#gum

https://www.bipm.org/en/publications/guides/#vim
https://www.bipm.org/en/publications/guides/#gum


• https://www.bipm.org/en/publications/guides/#gum
 https://www.nist.gov/pml/nist-technical-note-1297 (1994) is similar, but now out of date

• Extensive, well-thought-out framework for dealing with uncertainty in 
measurement
 Clearly-defined concepts and terms

 Practical approach

• The GUM doesn’t cover 
 the use of measurements in models that have

• uncertain assumptions

• uncertain parameters

• uncertain form

• shared uncertainties

 representativeness (e.g., of a breathing-zone air sample)

 inference from measurements (e.g., dose-response relationship)

2008 Guide to the Expression of  Uncertainty in Measurement 
(GUM) 
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The Error Approach and the Uncertainty Approach

Welcome to the 21st Century!

8



Old: The Error Approach
(According to the VIM, before 1980)

• “The objective of measurement in the Error Approach is to determine an 

estimate of the true value that is as close as possible to that single true 

value. 

• “The deviation from the true value is composed of random and systematic 

errors. 

• “The two kinds of errors, assumed to be always distinguishable, have to be 

treated differently. 

• “No rule can be derived on how they combine to form the total error of any 

given measurement result, usually taken as the estimate. 

• “Usually, only an upper limit of the absolute value of the total error is 

estimated, sometimes loosely named ‘uncertainty.’”
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New: The Uncertainty Approach
(According to the VIM, since 1980)

• “The components of measurement uncertainty should be grouped into two 

categories, Type A and Type B, according to whether they were evaluated 

by statistical methods or otherwise, and that they be combined to yield a 

variance according to the rules of mathematical probability theory by also 

treating the Type B components in terms of variances. 

• “The resulting standard deviation is an expression of a measurement 

uncertainty.

• “The Uncertainty Approach … focused on the mathematical treatment of 

measurement uncertainty through an explicit measurement model under the 

assumption that the measurand can be characterized by an essentially 

unique value.”
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Uncertainty Approach 2

• “The objective of measurement in the Uncertainty Approach is not to 

determine a true value as closely as possible. 

• “Rather, it is assumed that the information from measurement only permits 

assignment of an interval of reasonable values to the measurand.

• “…even the most refined measurement cannot reduce the interval to a 

single value because of the finite amount of detail in the definition of a 

measurand.

• “The objective of measurement is then to establish a probability that this 

essentially unique value [the measurand] lies within an interval of measured 

quantity values, based on the information available from measurement.”

• “The interval of values offered to describe the measurand is the interval of 

values of measurement standards that would have given the same 

indications.”
11



More Vocabulary
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Definition of Measurand

•measurand - the quantity intended to be measured 

• Its value is generally unknown (and unknowable)

 Exception (in Strom’s opinion!): something we can count

•A measurand is the “true” value of a well-defined physical quantity that can 

be characterized by an essentially unique value

 If the phenomenon of interest can be represented only as a distribution of values or is 

dependent on one or more parameters, such as time, then the measurands required for 

its description are the set of quantities describing that distribution or that dependence

Strom 13



2008 GUM General Metrological Terms - 1
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GUM Term Meaning

(measurable) quantity property of a phenomenon, body, or substance, where the 
property has a magnitude that can be expressed as a number and 
a reference

value (of a quantity) magnitude of a particular quantity generally expressed as a unit 
of measurement multiplied by a number

value of a measurand the quantity intended to be measured. [the unknown value of a 
physical quantity representing the “true state of Nature” This is 
sometimes called the “true value” or the “actual value”]

conventional true value 
(of a quantity)

value attributed to a particular quantity and accepted, sometimes 
by convention, as having an uncertainty appropriate for a given 
purpose

measurement process of experimentally obtaining one or more quantity values 
that can reasonably be attributed to a quantity



2008 GUM General Metrological Terms - 2
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GUM Term Meaning

result of a 
measurement

value attributed to a measurand, obtained by measurement

uncorrected result result of a measurement before correction for systematic error 
(i.e., bias)

corrected result result of a measurement after correction for systematic error 
(i.e., bias)

accuracy of 
measurement

closeness of the agreement between the result of a measurement 
and a true value of the measurand

repeatability (of results 
of measurements)

closeness of the agreement between the results of successive 
measurements of the same measurand carried out under the 
same conditions of measurement

reproducibility (of 
results of 
measurements)

closeness of agreement between the results of measurements of 
the same measurand carried out under changed conditions of 
measurement



2008 GUM General Metrological Terms - 3
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GUM Term Meaning

uncertainty (of 
measurement)

parameter, associated with the result of a measurement, that 
characterizes the dispersion of the values that could reasonably 
be attributed to the measurand. It is a bound for the likely size 
of the measurement error.

error (of measurement) result of a measurement minus a true value of the measurand
(i.e., the [unknowable] difference between a measured result 
the actual value of the measurand.) “Error is an idealized 
concept and errors cannot be known exactly” (Note 3.2.1)

relative error error of measurement divided by a true value of the measurand

correction value added algebraically to the uncorrected result of a 
measurement to compensate for systematic error

correction factor numerical factor by which the uncorrected result of a 
measurement is multiplied to compensate for systematic error



Type A and Type B Uncertainty Evaluations

•Uncertainty that is evaluated by the statistical analysis of series of 

observations is called a “Type A” uncertainty evaluation.

•Uncertainty that is evaluated by means other than the statistical analysis 

of a series of observations is called a “Type B” uncertainty evaluation.

•Note that using        as an estimate of the standard deviation of N counts 

is a Type B uncertainty evaluation!
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Uncertainty and Variability

• Uncertainty 
 stems from lack of knowledge, so it can be characterized and 
managed but not eliminated

can be reduced by the use of more or better data

• Variability 
 is an inherent characteristic of a population, inasmuch as people vary 
substantially in their exposures and their susceptibility to potentially 
harmful effects of the exposures

cannot be reduced, but it can be better characterized with improved 
information

-- National Research Council. 2008. Science and Decisions: Advancing Risk Assessment. 
http://www.nap.edu/catalog.php?record_id=12209, National Academies Press, Washington, DC
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Terms: Error, Uncertainty, Variability

• “The difference between error and uncertainty should always be borne in 

mind.” 

• “For example, the result of a measurement after correction can unknowably 

be very close to the unknown value of the measurand, and thus have 

negligible error, even though it may have a large uncertainty.”

• If you accept the GUM definitions of error and uncertainty

 there are no such things as “error bars” on a graph! 

 such bars are “uncertainty bars”

•Variability is the range of values for different individuals in a population

 e.g., height, weight, metabolism
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Random and Systematic Uncertainty versus 
Type A and Type B Uncertainty Evaluation

•GUM: There is not always a simple correspondence between the 

classification of uncertainty components into categories A and B and the 

commonly used classification of uncertainty components as “random” 

and “systematic.” 

•The nature of an uncertainty component is conditioned by the use made 

of the corresponding quantity, that is, on how that quantity appears in the 

mathematical model that describes the measurement process. 

•When the corresponding quantity is used in a different way, a “random” 

component may become a “systematic” component and vice versa. 
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Random and Systematic “Errors”

•Uncertainty is our estimate of how large the error may be

•We do not know how large the error actually is
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GUM Term Meaning

random error result of a measurement minus the mean that would 
result from an infinite number of measurements of the 
measurand carried out under repeatability conditions

systematic error mean that would result from an infinite number of 
measurements of the same measurand carried out 
under repeatability conditions minus a true value of 
the measurand



Classical  and Bayesian Statistical Inference



Classical  and Bayesian Statistical Inference

•Bayesian statistical inference has replaced classical inference in more and 

more areas of interest to health physicists, such as determining 

 whether activity is present in a sample

 what a detection system can be relied on to detect

 what can be inferred about intake and committed dose from bioassay data
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The Two Counting Problems:
1. The “Forward Problem”

•Radioactive decay is a Bernoulli process described by a binomial or 

Poisson distribution
 A Bernoulli process is one concerned with the count of the total number of 

independent events, each with the same probability, occurring in a specified number 

of trials

•The “forward problem”
 from properties of the process, we predict the distribution of counting results (mean, 

standard deviation (SD))

 measurand  distribution of possible observations

 as seen later, this is the Bayesian likelihood function



25

The Two Counting Problems:
2. The “Reverse Problem”

• Measure a counting result: N counts

• From the counting result, we infer the 

parameters of the underlying binomial 

or Poisson distribution (μ, standard 

deviation = σ)

see, e.g., Rainwater and Wu (1947)

• What range of values of the 

measurand likely gave rise to the 

measurement result(s)?

• This is the problem we’re really 

interested in

• This is a Bayesian problem!
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Comparison of Two Kinds of Statistics

•Classical statistics 

 does the forward problem well

 does not do the reverse problem at all

•Bayesian statistics does the reverse problem using 

 a prior probability distribution

 the observed results

 a likelihood function (a classical expression of the forward problem)



Bayes’s Rule (Simple form)

•Bayes rule gives probabilistic descriptions of the values the measurand 

could plausibly have given 

 the measurement results

how the measurement result(s) depend on the measurand, and

what we knew about the measurand before we started
27
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•Some form of prior probability is required!

•The prior probability is what you know before you start

•The prior can have more or less effect on the posterior, depending on the 

precision of the data

•The prior can be subjective

•The prior is sometimes the topic of unresolvable arguments

Bayesian Approach: The Prior Probability 1
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•The prior can be “nothing”

 even “nothing” can take several forms

 “uniform,” “flat,” or “uninformative” prior: all values of B are “equally probable”

 “vague” prior: all values of ln(B) are equally probable…

•The prior can be other information – here are examples for intakes:

 the CAM alarmed or there was facial or skin contamination or a positive nasal swab

 the worker had a previous intake or a previous positive bioassay

•The prior can be hard to nail down

 “small values of  blank are more likely than large ones”

Bayesian Approach: The Prior Probability 2
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•The measurand or “state of nature” (e.g., count rate from analyte) is what 

we want to know

•The “evidence” is what we have observed

•The likelihood of the “evidence” given the measurand is what we know 

about the way nature works

•The probability of the measurand is what we believed before we obtained 

the evidence

Philosophical Statement of Bayes’s Rule

(evidence | measurand) (measurand)
(measurand|evidence)

normalizing factor

L P
P 
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•Ps are probability densities

•We want to determine the posterior probability density

•This is the probability of various values of the measurand μ given the 

measurement result(s) N

Bayes’s Rule: Continuous Form
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•The posterior probability of any particular value of the measurand, μ

given that we’ve observed N counts, is

• In this case, the posterior probability density function is just the 

likelihood function with the dependent and independent variables 

reversed

•This is the probability of various values of the measurand μ given the 

measurement result(s) N

Bayes’s Rule for a Poisson Likelihood
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•when you observe N counts, you should 
 record N

 use N+1 in your calculations if using Bayes’s theorem with a uniform (ignorant) prior

Bayesian Posterior Probabilities for a Poisson Likelihood 
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Bayesian posterior 
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Wait! What? 
•You’re telling me that when I observe zero counts, 

the expected value of the mean of the number of 

counts is one?

•Yes.

•The closer the true, nonzero, positive mean μ of a 

Poisson distribution is to zero, the more likely a 

sample from that distribution will be zero

μ P(0|μ )

0 1

0.1 0.905

0.5 0.607

1 0.368

2 0.135

3 0.050

5 0.007

10 0.00005
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Strom 36
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Poisson Distribution,   ρt  1
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Poisson Distribution,   ρt  3
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Poisson Distribution,   ρt 10
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1  1 

Measurand, μ
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μ P(0|μ )
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μ P(0|μ )
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μ P(0|μ )
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Observe N, Use N+1                       (1)

•The use of N + 1 has been around since the fall of 1945, if not before

• In 2005, I asked Gerhardt Friedlander about his reference for N + 1 in 

Radiochemistry, the 1949 book by Friedlander & Kennedy

•Friedlander had referenced a personal communication from R.W. Dodson

•Friedlander emailed me about Richard W. Dodson, who would later head 

chemistry at Brookhaven http://www.chemistry.bnl.gov/dodson/dodson.htm: 
“I first heard [Dodson] derive (indeed based on Bayes' theorem) the result that we 

quoted in our 1949 book in a set of three lectures on counting statistics that he gave at 

Los Alamos in the fall of 1945 in the framework of a course on radiochemistry given 

by Joe Kennedy and me. It was the lecture notes from that course that became the 

basis of our 1949 textbook. To the best of my knowledge Dodson never published his 

notes on counting statistics (although I remember urging him to do so) because he felt 

that they didn't really contain anything new or original.”
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Observe N, Use N+1                      (2)

•N+1 has been in
 Rainwater & Wu. 1947. Nucleonics 1:60-69

 Every edition of Friedlander & Kennedy’s Nuclear and Radiochemistry since 1949

 Thomas J. 1963. Risø Report 70. Danish AEC

 Stevenson PC. 1966. NAS-NS-3109. The National Academy of Sciences

 Many more recent works

•When are we going to wake up and smell the coffee?
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This is an ISO Type B uncertainty evaluation
Strom 48

Classical Statistics: 
Traditional Relationships Among Observed Quantities

2

b

b

2

g

2

b

b

2

2

g

g

2

n

b

b

g

g

bgn

g

g

g

b

b
b

 
)(

 
)(

)(

 ; 

t

N

t

N

t

Ns

t

Ns
Rs

t

N

t

N
RRR

t

N
R

t

N
R

g








What’s Wrong with this Picture?

Among other things, it gives a lot of biased (wrong) answers
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This is an ISO Type B uncertainty evaluation
Strom 50

Bayesian Statistics with Uniform Prior: 
Relationships Among Observed Quantities

If tg = tb, this is identical to the 

classical result!



Decision Rules:
Is There Any Activity There?

(Is the Measurand Greater than Zero?)
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Error Terminology

Type I Error Type II Error
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Warning: “Error” has other meanings outside of metrology!

•Baseball: “error” means “blunder” or “mistake”

•Too many statisticians use “error” loosely and non-specifically: 

“uncertainty” in the metrology sense

“error” in the metrology sense

“mistake” =  “wrong decision”

Strom 53

uEnglish Lesson!
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Error Terminology

• A Type I error (wrong decision) is falsely concluding there’s activity present when no 
activity is present

• A Type II error is falsely concluding there’s no activity present when activity is present

• The probability of a Type I error is called a

• The probability of a Type II error is called b

• The number of standard deviations above zero on the standard normal distribution 
having a probability of a or b of being higher is known as the “standard normal 
deviate,” ka or kb

 these are k1a or k1b in ISO notation

• For a = 0.05 (a 5% chance of making a Type I error), ka = 1.645

• For b = 0.05 (a 5% chance of making a Type II error),  kb = 1.645
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Calculating kα

• 3.29 = 2  1.645 = 2  ka

• In Excel, calculate ka using for α = 0.05

=NORMSINV(1 ‒ 0.05) (Excel 2003)

=NORM.S.INV(1 ‒ 0.05) (Excel 2007 and later)

returns 1.645
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Notation

• Nb, Ng, Nn, observed numbers of 

background, gross, and net counts

• tb, tg, observed background and 

gross count times

• Rb, Rg, Rn, observed background, 

gross, and net count rates

• rb, true (but unknown) 

background count rate

• b = rbtb, expectation value of 

number of background counts in 

time tb

• a, a priori false positive rate

• a, actual false positive rate

• ka, z, standard normal deviates

• DL, decision level (can be for 

counts or count rate)
• I prefer decision threshold, DT, 

which is the self-defining 

international usage
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The Commonly Used Decision Rule

•Nicholson’s (1963) D2 rule, Currie’s (1968) rule, ANSI/HPS N13.30-

1996, MARSSIM, even MARLAP for large numbers of counts
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Evaluating uncertainty for a single measurement

•When only one observation of a number of counts N is made, a Type A 

uncertainty evaluation is not possible

•By assuming that measurement result N is the measurand μ (that is, by 

assuming that N is the mean of the Poisson distribution from which we are 

randomly sampling), we also assume that 

 N is the variance, s2(N), of that Poisson distribution

 √N is the standard deviation, s(N), of that Poisson distribution

•Thus,

•This is a poor assumption for small numbers of counts

Strom 58

NNs )(
This is an ISO Type B 

uncertainty evaluation
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Problems with the
Current Decision Rule

•Actual false positive rate a is independent of a at very small numbers of 

counts 

b = rbtb << 1

•Way too many false positives at b  0.

•Even at b = 10, only asymptotically approaches a for larger values

•For very small a, no good even at b = 100!
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Why the Currie/N13.30 Decision Rule Fails 
at Very Low Background Rates

•The traditional decision rule is based on 2 false assumptions:

1. “The observed value Nb is a good estimate of the measurand μb” (it’s not)

2. “The observed value Nb is a good estimate of the variance of μb” (it’s not)

• that is, that “Nb
1/2 is a good estimate of the standard deviation of μb” (it’s not)

•Both assumptions have been made by many authors
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“Nb + 1” Decision Rule

•Bayesian inference of background rate

•Question: If one observes Nb counts, what is the expectation value of the 

background distribution that gave rise to this observation ?

•Bayesian answer (uniform prior): b = Nb + 1

• Idea: Friedlander & Kennedy1949; Friedlander et al. 1955, 1963; Stevenson 1966; 

Little 1982
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What Is the Smallest Measurand
that One Can Reliably Detect?

What Value of the Measurand Would Usually Give 

a Measurement Result above the Decision Level?
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Classical Statistics Predicts the Probability of a Range of Values of 
Observed Counts Based on a Hypothetical Value of the Measurand

•What is the probability that a particular value of the measurand would 

result in an observation greater than the decision level (DL)?

•What value of the measurand would give a count rate greater than the 

DL 95% of the time?
 that is, what measurand would have a false-negative probability β = 0.05?

 let’s define “usually” as “95% of the time”

•This quantity is the “smallest usually detectable measurand,” SUDM 

•This quantity is incorrectly called by a lot of stupid and confusing 

names, like
 “detection level,” LD 

 “minimum detectable amount,” MDA 

 “limit of detection,” LOD

 and on and on…



Strom

The “Smallest Usually Detectable Measurand” SUDM

• The measurand (true amount) that will usually give a counting result 

above the decision level DL (or, better, the decision threshold, DT)
 “usually” means (1-b), where b is the acceptable probability of not detecting

 typically, we choose b = 0.05, that is, only 1 time in 20 will we fail to detect an 

unknown whose true activity = SUDM(A)

where Y is the counting yield (counts per second per becquerel) or (counts per 

nuclear transition)
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<DL <MDA

Always compare a result with the decision level.
Never compare a result with the minimum detectable amount!

A shout out to Rick Brake of LANL, who drew this on a cocktail napkin at a bar in Santa Fe at the 1992 BAER conference
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<DT <SUDM

Always compare a result with the decision threshold.
Never compare a result with the smallest usually detectable measurand!



69 Alan Dunn in The New Yorker (1972)Alan Dunn in The New Yorker (1972)

Decision Threshold
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S    

U    

D    

M

DT

noise

Decision Threshod

Irrelevant After Measurement

No Handle to Pull!

Unlikely to be noise: 

Pull handle!

Too likely to be noise: 

Don’t pull handle.



Conclusions

•The measurand is 
“the quantity intended to be measured”

 the unknown, and usually unknowable, “true state of Nature”

•Measurement results are correctly used to describe an interval in 

which the measurand probably falls

•Bayes’s theorem allows us to make probabilistic statements about 

the measurand

•Traditional formulas for decision level and so-called minimum 

detectable activity perform poorly

•Even the most simplistic Bayesian solutions perform better than 

traditional formulas


