Pu contaminated wound
- The USTUR whole-body donor accidentally punctured his finger while working in the hood gloves.
- The wound was contaminated with plutonium nitrate.
- Initial survey meter reading: 20,000 dpm
- Decontaminated to ~5,000 dpm
- Worksite personnel estimated initial wound activity as ~4.1 kBq of 239Pu

Treatment
- Contaminated tissue was excised twice: ~2.3 kBq was removed
- 59 Bq was measured in wound a month later
- Chelation treatment was administered
- 16 g Ca-DTPA in 16 l.v. injections
- Over two months post-intake

U.S. Transuranium and Uranium Registries (USTUR)
- Established by U.S. Atomic Energy Commission in 1968
- Since 1992, operated by College of Pharmacy at Washington State University as a research grant funded by U.S. Department of Energy
- Follows up occupationally exposed workers, from exposure through full lifespan, by studying the bioinetics (uptake, translocation and retention), and tissue dosimetry of the actinides (Pu, Am, and U).
- Retains data from 34 living and 355 deceased Registrants.
- 19 USTUR registrants had recorded 239Pu wound(s) as major intake route: 8 whole-body, 11 partial-body
- Chelation treatment administered to 5 of 19

Follow-up bioassay available: urine, wound counts
- Post-mortem tissue analyses: liver, skeleton, wound

Bioassay
- 83 valid urine measurements
 - Autoradiography
 - MDA: ~0.8 mBq
- 57 measurements affected by DTPA
 - Max rate: 11.2 Bq d⁻¹ on day 1
 - Total Pu excreted: 77.8 Bq
- 26 “post-treatment” measurements
 - Average rate: 3.0 ± 2.5 mBq d⁻¹
 - < MDA after 1,000 d post-intake

Tissue Radiochemical Analysis

Data Analysis Method
- IMBA Professional Plus+ (Birchall et al. 2007)
- Special academic edition
- Allows to build and solve systemic models

Models
- NCRP 156 Wound Model (2007) Soluble strong material
- Pu systemic model (Leggett et al. 2005)

Results
- Max likelihood fit: χ² alpha > 0.05

Pu retention at time of death, Bq

Future Work
- Apply the system of models for Pu decorporation (Dumit et al. 2018) to:
 - simultaneously fit DTPA-affecting and not-affecting urine data
 - Improve, validate and optimize the proposed system of models

Acknowledgement
The USTUR is funded by U.S. Department of Energy, Office of Domestic and International Health Studies [AU-13], under Award Number DE-HS000073. We would like to express our special thanks to Stacey L. McComish for the most helpful discussions and comments on the study.

References
- NCRP. Report 156, 2007
- Leggett et al. Radiation Research 144: 111-122; 2005

Disclaimer
This presentation was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.