Chelation Treatment after Occupational Exposure to Plutonium

Sara Dumit, Maia Avtandilashvili, and Sergei Y. Tolmachev

United States Transuranium and Uranium Registries, College of Pharmacy, Washington State University
1845 Terminal Drive, Richland, WA 99354, USA

Objectives
- Plutonium biokinetic modeling under chelation treatment
- Estimating plutonium intake and radiation dose
- Evaluating effectiveness of chelation treatment

USTUR Case 0785
- Primary exposure: Plutonium (Pu)
- Exposure scenario: Acute inhalation and wound
- Material type: M (assumed)
- Smoking status: 35 y (0.5 pack per day)
- Cause of death: Lung cancer
- Post-Intake: 51 y
- Age: 79 y

Accident
- Glove-box explosion; Working with plutonium nitrate solution
- Face, hair, neck, hands, and forearms contamination
- Facial wound deposition 8,032 Bq
- Plutonium systemic burden 7,400 Bq (worksite)
 Five times higher than permissible amount

Autopsy Tissue Analysis
- Total of 32 tissue samples
- \(^{239+240}\text{Pu}\) concentration measured
- Total tissue/organ activity estimated

Table: Tissue/Organ (Pu Concentration, Bq kg\(^{-1}\))
<table>
<thead>
<tr>
<th>Tissue/Organ</th>
<th>Pu Concentration, Bq kg(^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lungs</td>
<td>18.2 (\pm) 0.3</td>
</tr>
<tr>
<td>LNTH</td>
<td>5.88 (\pm) 98</td>
</tr>
<tr>
<td>Liver</td>
<td>548 (\pm) 36</td>
</tr>
<tr>
<td>Skeleton</td>
<td>109 (\pm) 8</td>
</tr>
<tr>
<td>Total Systemic</td>
<td>2,728 (\pm) 74</td>
</tr>
</tbody>
</table>

LnTH: Lung concentration ratio = 3.23

Exposure to very insoluble material ("Super S")

IMBA Professional Plus\(^{\circledR}\)

- A suite of software modules for internal dosimetry
- Implements all current bioassay and dosimetric models
- Enables the user to:
 - Estimate an intake from bioassay measurement data
 - Predict bioassay quantities from a specific intake
 - Calculate resulting doses

Data Analysis

Biokinetic Models
- International Commission on Radiological Protection Human Respiratory Tract Model (ICRP 190)
- National Council on Radiation Protection and Measurements Wound Model (NCRP 196)
- Leggett Plutonium Systemic Model (Leggett et al., 2009)

Assumptions
- Particle size: 1 \(\mu\)m AMAD
- Lung absorption type: Slow (S)
- Wound retention category: Insoluble colloid

Estimating Residual Intake: Activity not Removed by Chelation Therapy

- Inhalation: 33,050 Bq (97%)
- Wound: 1,084 Bq (3%)

Total Intake and Dose Estimation

- Intake
 - Residual intake: 34,134 Bq
 - Pu removed by chelation:
 - Committed Effective Dose: 548 Bq
 - Projected CED: 1.11 Sv

Conclusions
- Exposure to highly insoluble plutonium
- Systemic deposition 51 years post-intake was 2,728 Bq
- Major internal contamination from inhalation (97%)
- Estimated intake was 34,817 Bq
- Estimated committed effective dose was 1.09 Sv
- Only 25 dose was saved by chelation treatment

Podium Presentation
The results were also presented at the 61st Annual Meeting of the Health Physics Society: July 17 - 21, 2016 Spokane, WA as a part of USTUR: Five Decade Follow-up of Plutonium and Uranium Workers special session

Funding
- The United States Transuranium and Uranium Registries (USTUR) is funded by U.S. Department of Energy, Office of Domestic and International Health Studies (AU-13), under Grant Award No.: DE-ES0009073
- This work was supported by CAPES, Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Brazil, under Grant Award No.: 13/2013-9

References