DIGITAL AUTORADIOGRAPHY OF BONE-SEEKING RADIONUCLIDES IN HUMAN

George Tabatadze*, Brian W. Miller†, Sergei Y. Tolmachev*

*U.S. Transuranium and Uranium Registries, 1845 Terminal Drive, Richland, WA 99354, USA, george.tabatadze@wsu.edu, stolmachev@wsu.edu
†College of Optical Sciences, University of Arizona, Tucson, AZ 85719, USA, bwmiller@optics.arizona.edu

This paper describes the ionizing-radiation quantum imaging detector (iQID) system and its applicability for imaging of bone-seeking alpha-emitters. The United States Transuranium and Uranium Registries (USTUR) studies actinide (plutonium, americium, and uranium) biokinetics and tissue dosimetry by following up occupationally exposed individuals. Estimation of the micro-distribution of radionuclides in tissues is an important task to support biokinetic modeling and dose assessment. A newly developed iQID system was used to study radionuclide distribution in human bones. Results showed that iQID imaging approach is proven to be an effective method for micro-scale heterogeneous distribution studies, where traditional counting methods do not apply.

IONIZING-RADIATION QUANTUM IMAGING DETECTOR

The ionizing-radiation Quantum Imaging Detector (iQID) is a newly developed digital autoradiography (radiation imaging) system¹. The iQID allows for real-time quantitative autoradiography and study of radionuclide micro-distribution at a low radionuclide activity level (<10⁻³ events per second). The iQID system is a portable, laptop-operated unit. Single-particle imaging with sub-pixel position estimation enables imaging studies to be performed at spatial resolutions as high as 20 μm. Large-area iQID configurations (up to 200 mm diameter) accommodate studies requiring simultaneous imaging of an array of samples. The high detection efficiency (50-100%), low background rate, and event-by-event spatiotemporal information allow activity distributions to be quantified, even with short-lived radionuclides.

The iQID is comprised of a scintillator in direct contact with a micro-channel plate (MCP) image intensifier and a lens for imaging the intensifier screen to a CCD or CMOS camera sensor, all within a compact light-tight enclosure. iQID is sensitive to a broad range of radiation including gamma/X-rays, neutrons, spontaneous fission, conversion electrons, alpha and beta particles¹. In order to localize the origin of a radioactive particle precisely, a iQID image is superimposed over the structural image of a sample. The iQID image carries information on the spatial distribution of radioactive particles, while a structural image represents a sample geometry. The structural digital image is acquired using a scanner, digital camera, or microscope.

FEASIBILITY STUDIES

The iQID system was used for microdosimetry of targeted radionuclide therapy using α- and β-emitters: ²¹¹At, ⁹⁰⁰Y, and ¹⁷⁷Lu in soft tissues². At the USTUR, the application of iQID is successfully extended for imaging of bone-seeking α-emitters: ²⁴¹Am, ²³⁹Pu, and ²²⁶Ra in humans³. For the internally deposited radionuclides, activity distribution was visualized and quantified in various bone sections. Radionuclide activity distribution ranged between 0.002 and 0.003 mBq mm⁻² for ²³⁹Pu 0.1 and 0.7 mBq mm⁻² for ²²⁶Ra, and 1.0 and 10.0 mBq mm⁻² for ²⁴¹Am. Mapping of radionuclide distribution was successfully achieved on a macro-scale. However, it was challenging to distinguish whether α-events originated from the surface or volume of a sample. The α-interference can be eliminated by preparing micron-thick slides. (Fig. 1).
Fig. 1. Distribution of 241Am in clavicle acromial end (a) – unpolished bone surface, and in humerus proximal end (b) – polished 100-µm-thick slide.

BONE MICRO-DOSIMETRY

To study bone micro-dosimetry, bone specimens were sampled from humerus proximal end, humerus proximal shaft, and clavicle acromial end. These specimens were embedded in methyl methacrylate plastic and processed to produce multiple 100-µm-thick sections. Bone sections were polished to a fine surface. This allowed to investigate distribution of metabolized 241Am within trabecular bone regions on a micro-scale. The 241Am activity distributions were visualized and quantified in cortical bone and trabecular spongiosa (Fig. 1b). The 241Am activity concentration ratios within different bone regions were used to represent the radionuclide distribution. The trabecular-to-cortical bone and trabecular spongiosa-to-cortical bone ratios are reported in Table I for the humerus and clavicle. The iQID values are in agreement with those obtained from radiochemical analysis but not consistent with the ICRP biokinetic model predictions.

<table>
<thead>
<tr>
<th>Bone Region</th>
<th>Humerus Bone</th>
<th>Clavicle Bone</th>
<th>iQID/ICRP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>iQID</td>
<td>α-spec</td>
<td>iQID</td>
</tr>
<tr>
<td>Trabecular-to-cortical</td>
<td>2.76 ± 0.04</td>
<td>2.15 ± 0.13</td>
<td>1.29 ± 0.15</td>
</tr>
<tr>
<td>Spongiosa-to-cortical</td>
<td>1.09 ± 0.01</td>
<td>1.28 ± 0.08</td>
<td>0.65 ± 0.06</td>
</tr>
</tbody>
</table>

CONCLUSIONS

The iQID digital imager allows for real-time visualization and quantitative digital autoradiography of bone-seeking alpha-emitters. To reduce a signal-to-noise ratio and improve an image resolution, appropriate sample preparation is required. The 241Am micro-distribution measurements showed that ICRP defaults underestimate 241Am concentration ratios within cortical bone regions at least by a factor of 3.

ACKNOWLEDGMENTS

The USTUR is funded by U.S. Department of Energy, Office of Domestic and International Studies (AU-13) under Grant Award No DE-HS0000073.

REFERENCES