USTUR Case 0846:
Modeling Americium Biokinetics after Intensive Decorporation Therapy

Bastian Breustedt*
*Karlsruhe Institute of Technology (KIT), Germany
Maia Avtandilashvili†, Stacey L McComish†, Sergei Y Tolmachev†
†USTUR, Washington State University, USA

“Learning from Plutonium and Uranium Workers”
Why using USTUR data for chelation therapy modeling?

- DTPA chelation therapy removes “accessible” 241Am in extracellular fluids
 - How are extracellular fluids in ICRP models represented?

- Example
 - (USTUR Case 0269)
 - ST0 compartment
Why using USTUR data for chelation therapy modeling?

- DTPA chelation therapy removes “accessible” 241Am in extracellular fluids
 - How are extracellular fluids in ICRP models represented?

- Example
 - (USTUR Case 0269)
 - ST0 compartment
 - ST0 + liver (x %)
- Fit to urine data possible for several assumptions
Why using USTUR data for chelation therapy modeling?

- DTPA chelation therapy removes “accessible” 241Am in extracellular fluids
 - How are extracellular fluids in ICRP models represented?

- Example
 (USTUR Case 0269)
 - ST0 compartment
 - ST0 + liver ($x\%$)
- Fit to urine data possible for several assumptions
- Different predictions of effect of therapy
Why using USTUR data for chelation therapy modeling?

- USTUR has a large collection of data of chelated cases
 - Health Physics Database
 - Urinary and Fecal excretion
 - In-vivo counting (mainly for 241Am)
 - Autopsy data
 - Provides insight at distribution after therapy
Case 0846 – Scenario

• Manufacturing sources containing 241AmO$_2$
 ✓ 50 compacts manufactured over 3 years

• Compacting/pressing of pellet in pressing hood
 ✓ Half-mask respirator worn for transfer and compacting
 ✓ A “small” amount of visible dust was sometimes released during the pressing operation in the hood

• Alpha activity was detected in urine samples
 ✓ Worker was sent to WBC
 ✓ Estimated body burden = 1.8 mCi = 66.7 kBq (36 times the Maximum Permissible Body Burden)
Case 0846 – Therapy and Bioassay

• Removed from work and chelation therapy started

• 380 week therapy
 ✓ total administration of 313.5g Ca-DTPA
 • 330 i.v. of 1g Ca-DTPA: once a week
 • 57 i.v. of 0.5g Ca-DTPA: twice per week
 • 43 weeks without treatment

• Extensive Bioassay Measurements under Treatment
 ✓ Weekly body counts until week 60 of therapy
 ✓ Fecal collection until week 80
 ✓ Virtually all urine has been collected under therapy
 ▪ Daily collection in the first two years of therapy
 ▪ Weekly collection in the following 5 years
 ▪ One week per month in the last year
Case 0846 – Materials

• The case has been studied intensively (in 1960s - 1970s)
 ✓ Several reports and papers in Health Physics Journal
 ✓ Chapter in book for HPS Summer School 2004

• Bioassay data, exposure and medical records are available at USTUR
Case 0846 – The Dataset

- Data were collected and standardized in MS Excel file
Case 0846 – Original Analysis

• Pre ICRP Publication 30 era
 ✓ Empirical equations, no compartmental models

• Assumptions
 ✓ average intake 2 years before therapy
 ✓ “DTPA complexes americium and plutonium as soon as it leaves bone surfaces and transports the complex to urine for excretion”

• Conclusions
 ✓ Half of the body burden removed is by action of DTPA
 ✓ 7 years post therapy “the body burden was 0.72mCi with most of remaining burden in bones”

Quotes taken from: Allen Brodsky and Niel Wald @ HPS SummerSchool 2004
ICRP compartmental models and reference values

- Lung (ICRP 66, Class M)
- Americium systemic (ICRP 67)
- GIT (ICRP 30, $f_1=0.005$)

Definition of initial scenario using pre-therapeutic data and information

- Urine: 8.14 Bq/d
- Whole body 66.7 kBq

Acute intake

- 1.2 MBq 241Am
- 380 days before therapy
Case 0846 – New Analysis

- CONRAD Model of DTPA therapy
 - 3 compartmental systems
 - 241Am
 - DTPA (injected)
 - 241Am-DTPA (chelates)
 - Coupling (2nd order kinetics)
 - Parameter K_c

- Original CONRAD Model
 - Chelation only in ST0 compartment

- Modified EURADOS Model
 - Chelation also in other compartments
Case 0846 – New Analysis (Cont’d)

- Daily urinary excretion data
 - Effect of DTPA at day after injection
 - Elevated and steeper Baseline in between
 - Enhancement factor: ~5

![Graph showing urinary excretion data with DTPA injections at 1g and 2x0.5g per week](image-url)
Case 0846 – New Analysis (Cont’d)

• Fitting daily urinary excretion data
 ✓ Chelation constant $K_C = 1E-10$
 ✓ 25% of chelation in liver
 ✓ Model prediction is dropping below unchelated baseline

- 1g DTPA / week
- 2x0.5 g DTPA / week
Case 0846 – New Analysis (Cont’d)

- Fitting daily urinary excretion and whole body data
 - $K_C = 1 \times 10^{-10}$ and 25% of chelation in liver
 - fit urinary excretion and whole body retention data
Case 0846 – New Analysis (Cont’d)

- Prediction of retention in organs
 - Predictions of retention in liver, skeleton and lungs
 - Acute inhalation of type M material is not a good choice
Case 0846 – New Analysis (Cont’d)

• Prediction of retention in organs
 ✓ Predictions of retention in liver, skeleton and lungs
 ✓ Acute inhalation of type M material is not a good choice

• The initial scenario needs to be refined
Summary

• The USTUR is unique resource for biokinetic modeling

• USTUR Case 0846
 ✓ Extensive data set is available
 ✓ Intake scenario is undefined
 ▪ Many assumptions are required for modeling
 ✓ Case 0846 contributed to education of students at KIT
 ▪ γ-measurement of 241Am in lung tissue samples
 ▪ MCNP simulations for HPGe detector calibration
Thank you for your Attention

Do you have any questions or suggestions on chelation therapy modeling? Bastian.breustedt@kit.edu is happy to receive and discuss them.

Five Decade Follow-up of Plutonium and Uranium Workers and hopefully many more decades to come.